我有一个大型数据框,其ID列可以重复2次以上,一个起始日期和结束日期列将构成一个时间段。我想找出,按ID分组,如果该ID的任何时间段与另一个ID重叠,如果是,则通过创建新列来标记它,例如,说明该ID是否有重叠。
以下是已包含所需新列的示例数据框:
structure(list(ID= c(34L, 34L, 80L, 80L, 81L, 81L, 81L, 94L,
94L), Start = structure(c(1072911600, 1262300400, 1157061600,
1277935200, 1157061600, 1277935200, 1157061600, 1075590000, 1285891200
), class = c("POSIXct", "POSIXt"), tzone = ""), End = structure(c(1262214000,
1409436000, 1251669600, 1404079200, 1251669600, 1404079200, 1251669600,
1264892400, 1475193600), class = c("POSIXct", "POSIXt"), tzone = ""),
Overlap = c(FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE,
FALSE, FALSE)), .Names = c("ID", "Start", "End", "Overlap"
), row.names = c(NA, -9L), class = "data.frame")
ID Start End Overlap
34 2004-01-01 00:00:00 2009-12-31 00:00:00 FALSE
34 2010-01-01 00:00:00 2014-08-31 00:00:00 FALSE
80 2006-09-01 00:00:00 2009-08-31 00:00:00 FALSE
80 2010-07-01 00:00:00 2014-06-30 00:00:00 FALSE
81 2006-09-01 00:00:00 2009-08-31 00:00:00 TRUE
81 2010-07-01 00:00:00 2014-06-30 00:00:00 TRUE
81 2006-09-01 00:00:00 2009-08-31 00:00:00 TRUE
94 2004-02-01 00:00:00 2010-01-31 00:00:00 FALSE
94 2010-10-01 02:00:00 2016-09-30 02:00:00 FALSE
在这种情况下,对于ID“81”,两个时间段之间存在重叠,因此我想将ID = 81的所有行标记为TRUE,这意味着找到该ID的至少两行中的重叠。这只是一个理想的解决方案,但总的来说,我想做的就是在按ID分组时找出重叠,因此标记它的方式可以灵活,以防它简化。
提前感谢您的帮助。
答案 0 :(得分:4)
另一个选项 - 假设df
包含您的数据框,则:
library(data.table)
dt <- data.table(df, key=c("Start", "End"))[, `:=`(Overlap=NULL, row=1:nrow(df))]
overlapping <- unique(foverlaps(dt, dt)[ID==i.ID & row!=i.row, ID])
dt[, `:=`(Overlap=FALSE, row=NULL)][ID %in% overlapping, Overlap:=TRUE][order(ID, Start)]
# ID Start End Overlap
# 1: 34 2004-01-01 00:00:00 2009-12-31 00:00:00 FALSE
# 2: 34 2010-01-01 00:00:00 2014-08-31 00:00:00 FALSE
# 3: 80 2006-09-01 00:00:00 2009-08-31 00:00:00 FALSE
# 4: 80 2010-07-01 00:00:00 2014-06-30 00:00:00 FALSE
# 5: 81 2006-09-01 00:00:00 2009-08-31 00:00:00 TRUE
# 6: 81 2006-09-01 00:00:00 2009-08-31 00:00:00 TRUE
# 7: 81 2010-07-01 00:00:00 2014-06-30 00:00:00 TRUE
# 8: 94 2004-02-01 00:00:00 2010-01-31 00:00:00 FALSE
# 9: 94 2010-10-01 02:00:00 2016-09-30 02:00:00 FALSE
答案 1 :(得分:0)
我认为这是您正在寻找的代码?让我知道。
- (NSArray*)getDisplayedAttributes
{
//Get stop attributes
NSMutableArray *attributes = [[NSMutableArray alloc] init];
for (Attribute *attr in self.attributes)
{
// Skip special attribute
BOOL found = false;
for (Attribute *sa in @[@"D:AR",@"D:AS",@"D:ARF",@"D:DD",@"D:DH"])
{
if ([(NSString*)sa isEqualToString:attr.name])
{
found = true;
break;
}
}
if (found) continue;
Attribute *attribute = [[Attribute alloc] init];
attribute.name = attr.name;
attribute.value = attr.value;
[attributes addObject:attribute];
}
return attributes;
}
另外,我希望有人能为我的data<- structure(list(ID= c(34L, 34L, 80L, 80L, 81L, 81L, 81L, 94L,
94L), Start = structure(c(1072911600, 1262300400, 1157061600,
1277935200, 1157061600, 1277935200, 1157061600, 1075590000, 1285891200
), class = c("POSIXct", "POSIXt"), tzone = ""), End = structure(c(1262214000,
1409436000, 1251669600, 1404079200, 1251669600, 1404079200, 1251669600,
1264892400, 1475193600), class = c("POSIXct", "POSIXt"), tzone = ""),
Overlap = c(FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE,
FALSE, FALSE)), .Names = c("ID", "Start", "End", "Overlap"
), row.names = c(NA, -9L), class = "data.frame")
library("dplyr")
library("lubridate")
overlaps<- function(intervals){
for(i in 1:(length(intervals)-1)){
for(j in (i+1):length(intervals)){
if(int_overlaps(intervals[i],intervals[j])){
return(TRUE)
}
}
}
return(FALSE)
}
data %>%
mutate(Interval=interval(Start,End))%>%
group_by(ID) %>%
do({
df<-.
ovl<- overlaps(df$Interval)
return(data.frame(ID=df$ID[1], ovl))
})
函数提供更优雅的解决方案..