Python scipy / numpy / pandas中的时间序列的分层聚类?

时间:2016-01-22 07:00:09

标签: python numpy pandas scipy

我有一个带有一些时间序列的DataFrame。我从那些时间序列中创建了一个相关矩阵,我想在这个相关矩阵上创建一个层次聚类。我怎样才能做到这一点?

#
# let't pretend this DataFrame contains some time series
#
df = pd.DataFrame((np.random.randn(150)).reshape(10,15))

         0         1         2               13           14    
0  0.369746  0.093882 -0.656211 ....  -0.596936  0  0.095960  
1  0.641457  1.120405 -0.468639 ....  -2.070802  1 -1.254159  
2  0.360756 -0.222554  0.367893 ....   0.566299  2  0.932898  
3  0.733130  0.666270 -0.624351 ....  -0.377017  3  0.340360  
4 -0.263967  1.143818  0.554947 ....   0.220406  4 -0.585353  
5  0.082964 -0.311667  1.323161 ....  -1.190672  5 -0.828039  
6  0.173685  0.719818 -0.881854 ....  -1.048066  6 -1.388395  
7  0.118301 -0.268945  0.909022 ....   0.094301  7  1.111376  
8 -1.341381  0.599435 -0.318425 ....   1.053272  8 -0.763416  
9 -1.146692  0.453125  0.150241 ....   0.454584  9  1.506249

#
# I can create a correlation matrix like this 
#
correlation_matrix = df.corr(method='spearman')

          0         1  ...          13         14 
0   1.000000 -0.139394 ...    0.090909   0.309091 
1  -0.139394  1.000000 ...   -0.636364   0.115152 
2   0.175758  0.733333 ...   -0.515152  -0.163636 
3   0.309091  0.163636 ...   -0.248485  -0.127273 
4   0.600000 -0.103030 ...    0.151515   0.175758 
5  -0.078788  0.054545 ...   -0.296970  -0.187879 
6  -0.175758 -0.272727 ...    0.151515  -0.139394 
7   0.163636 -0.042424 ...    0.187879   0.248485 
8   0.030303  0.915152 ...   -0.430303   0.296970 
9  -0.696970  0.321212 ...   -0.236364  -0.151515 
10  0.163636  0.115152 ...   -0.163636   0.381818 
11  0.321212 -0.236364 ...   -0.127273  -0.224242 
12 -0.054545 -0.200000 ...    0.078788   0.236364 
13  0.090909 -0.636364 ...    1.000000   0.381818 
14  0.309091  0.115152 ...    0.381818   1.000000 

现在,如何在此矩阵上构建分层聚类?

1 个答案:

答案 0 :(得分:33)

以下是如何使用SciPy构建我们的时间序列Hierarchical Clustering and Dendrogram的分步指南。请注意,scikit-learn(基于SciPY构建的强大数据分析库)已实现many other clustering algorithms

首先,我们构建一些合成时间序列来使用。我们将构建6组相关时间序列,我们希望层次聚类能够检测到这六个组。

import numpy as np
import seaborn as sns
import pandas as pd
from scipy import stats
import scipy.cluster.hierarchy as hac
import matplotlib.pyplot as plt

#
# build 6 time series groups for testing, called: a, b, c, d, e, f
#

num_samples = 61
group_size = 10

#
# create the main time series for each group
#

x = np.linspace(0, 5, num_samples)
scale = 4

a = scale * np.sin(x)
b = scale * (np.cos(1+x*3) + np.linspace(0, 1, num_samples))
c = scale * (np.sin(2+x*6) + np.linspace(0, -1, num_samples))
d = scale * (np.cos(3+x*9) + np.linspace(0, 4, num_samples))
e = scale * (np.sin(4+x*12) + np.linspace(0, -4, num_samples))
f = scale * np.cos(x)

#
# from each main series build 'group_size' series
#

timeSeries = pd.DataFrame()
ax = None
for arr in [a,b,c,d,e,f]:
    arr = arr + np.random.rand(group_size, num_samples) + np.random.randn(group_size, 1)
    df = pd.DataFrame(arr)
    timeSeries = timeSeries.append(df)

    # We use seaborn to plot what we have
    #ax = sns.tsplot(ax=ax, data=df.values, ci=[68, 95])
    ax = sns.tsplot(ax=ax, data=df.values, err_style="unit_traces")

plt.show()

enter image description here

现在我们进行聚类并绘制它:

# Do the clustering
Z = hac.linkage(timeSeries, method='single', metric='correlation')

# Plot dendogram
plt.figure(figsize=(25, 10))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('sample index')
plt.ylabel('distance')
hac.dendrogram(
    Z,
    leaf_rotation=90.,  # rotates the x axis labels
    leaf_font_size=8.,  # font size for the x axis labels
)
plt.show()

enter image description here

如果我们想要决定应用哪种相关性或使用其他距离指标,那么我们可以提供自定义指标函数:

# Here we use spearman correlation
def my_metric(x, y):
    r = stats.pearsonr(x, y)[0]
    return 1 - r # correlation to distance: range 0 to 2

# Do the clustering    
Z = hac.linkage(timeSeries,  method='single', metric=my_metric)

# Plot dendogram
plt.figure(figsize=(25, 10))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('sample index')
plt.ylabel('distance')
hac.dendrogram(
    Z,
    leaf_rotation=90.,  # rotates the x axis labels
    leaf_font_size=8.,  # font size for the x axis labels
)
plt.show()

enter image description here

要检索群集,我们可以使用fcluster函数。它可以以多种方式运行(查看文档),但在此示例中,我们将其作为目标,将我们想要的集群数量作为目标:

from scipy.cluster.hierarchy import fcluster

def print_clusters(timeSeries, Z, k, plot=False):
    # k Number of clusters I'd like to extract
    results = fcluster(Z, k, criterion='maxclust')

    # check the results
    s = pd.Series(results)
    clusters = s.unique()

    for c in clusters:
        cluster_indeces = s[s==c].index
        print("Cluster %d number of entries %d" % (c, len(cluster_indeces)))
        if plot:
            timeSeries.T.iloc[:,cluster_indeces].plot()
            plt.show()

print_clusters(timeSeries, Z, 6, plot=False)

输出:

Cluster 2 number of entries 10
Cluster 5 number of entries 10
Cluster 3 number of entries 10
Cluster 6 number of entries 10
Cluster 1 number of entries 10
Cluster 4 number of entries 10