如果我在Seconds(1)
中为批处理时间设置StreamingContext
,请执行以下操作:
val ssc = new StreamingContext(sc, Seconds(1))
3秒将收到3秒的数据,但我只需要第一秒的数据,我可以丢弃接下来的2秒数据。那么我可以花3秒钟来处理第一秒的数据吗?
答案 0 :(得分:2)
如果您跟踪计数器,可以通过updateStateByKey
执行此操作,例如:
import org.apache.spark.SparkContext
import org.apache.spark.streaming.dstream.ConstantInputDStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
object StreamEveryThirdApp {
def main(args: Array[String]) {
val sc = new SparkContext("local[*]", "Streaming Test")
implicit val ssc = new StreamingContext(sc, Seconds(1))
ssc.checkpoint("./checkpoint")
// generate stream
val inputDStream = createConstantStream
// increase seconds counter
val accStream = inputDStream.updateStateByKey(updateState)
// keep only 1st second records
val firstOfThree = accStream.filter { case (key, (value, counter)) => counter == 1}
firstOfThree.print()
ssc.start()
ssc.awaitTermination()
}
def updateState: (Seq[Int], Option[(Option[Int], Int)]) => Option[(Option[Int], Int)] = {
case(values, state) =>
state match {
// If no previous state, i.e. set first Second
case None => Some(Some(values.sum), 1)
// If this is 3rd second - remove state
case Some((prevValue, 3)) => None
// If this is not the first second - increase seconds counter, but don't calculate values
case Some((prevValue, counter)) => Some((None, counter + 1))
}
}
def createConstantStream(implicit ssc: StreamingContext): ConstantInputDStream[(String, Int)] = {
val seq = Seq(
("key1", 1),
("key2", 3),
("key1", 2),
("key1", 2)
)
val rdd = ssc.sparkContext.parallelize(seq)
val inputDStream = new ConstantInputDStream(ssc, rdd)
inputDStream
}
}
如果您的数据中有时间信息,您还可以使用3秒窗口stream.window(Seconds(3), Seconds(3))
并根据数据中的时间信息过滤记录,这通常是首选方法