我正在学习如何在Anaconda中使用Pyhton模块使用netCDF4。我正在尝试将值附加到我创建的两个变量time
和field
:
from netCDF4 import Dataset
import numpy as np
root_grp = Dataset('py_netcdf4.nc', 'w', format='NETCDF4')
root_grp.description = 'Example simulation data'
ndim = 128 # Size of the matrix ndim*ndim
xdimension = 0.75
ydimension = 0.75
# dimensions
root_grp.createDimension('time', None)
root_grp.createDimension('x', ndim)
root_grp.createDimension('y', ndim)
# variables
time = root_grp.createVariable('time', 'f8', ('time',))
x = root_grp.createVariable('x', 'f4', ('x',))
y = root_grp.createVariable('y', 'f4', ('y',))
field = root_grp.createVariable('field', 'f8', ('time', 'x', 'y',))
# data
x_range = np.linspace(0, xdimension, ndim)
y_range = np.linspace(0, ydimension, ndim)
x[:] = x_range
y[:] = y_range
for i in range(5):
time[i] = i*50.0
field[i,:,:] = np.random.uniform(size=(len(x_range), len(y_range)))
root_grp.close
但现在当我打印其中一个变量时,我得到它是空的(!!):
Python 2.7.10 |Anaconda 2.4.1 (64-bit)| (default, Sep 15 2015, 14:50:01)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
>>> from netCDF4 import Dataset
>>> root_grp = Dataset('py_netcdf4.nc', 'r', format='NETCDF4')
>>> print root_grp.variables["field"][:,:,:]
[]
>>>
我在这里做错了什么?
答案 0 :(得分:2)
这有效:
from netCDF4 import Dataset
import numpy as np
root_grp = Dataset('py_netcdf4.nc', 'w', format='NETCDF4')
root_grp.description = 'Example simulation data'
ndim = 128 # Size of the matrix ndim*ndim
xdimension = 0.75
ydimension = 0.75
# dimensions
root_grp.createDimension('time', None)
root_grp.createDimension('x', ndim)
root_grp.createDimension('y', ndim)
# variables
time = root_grp.createVariable('time', 'f8', ('time',))
x = root_grp.createVariable('x', 'f4', ('x',))
y = root_grp.createVariable('y', 'f4', ('y',))
field = root_grp.createVariable('field', 'f8', ('time', 'x', 'y',))
# data
x_range = np.linspace(0, xdimension, ndim)
y_range = np.linspace(0, ydimension, ndim)
x[:] = x_range
y[:] = y_range
for i in range(5):
time[i] = i*50.0
field[i,:,:] = np.random.uniform(size=(len(x_range), len(y_range)))
root_grp.close()
唯一的区别是我调用close()
方法:root_grp.close()
。