我是Hadoop的新手。我正在尝试Wordcount程序。
现在尝试多个输出文件,我使用MultipleOutputFormat
。这个链接帮助我做到了这一点。 http://hadoop.apache.org/common/docs/r0.19.0/api/org/apache/hadoop/mapred/lib/MultipleOutputs.html
在我的驱动程序课程中
MultipleOutputs.addNamedOutput(conf, "even",
org.apache.hadoop.mapred.TextOutputFormat.class, Text.class,
IntWritable.class);
MultipleOutputs.addNamedOutput(conf, "odd",
org.apache.hadoop.mapred.TextOutputFormat.class, Text.class,
IntWritable.class);`
我的reduce类成了这个
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
MultipleOutputs mos = null;
public void configure(JobConf job) {
mos = new MultipleOutputs(job);
}
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
if (sum % 2 == 0) {
mos.getCollector("even", reporter).collect(key, new IntWritable(sum));
}else {
mos.getCollector("odd", reporter).collect(key, new IntWritable(sum));
}
//output.collect(key, new IntWritable(sum));
}
@Override
public void close() throws IOException {
// TODO Auto-generated method stub
mos.close();
}
}
事情有效,但我收到很多文件,(每个地图减少一个奇数和一个)
问题是:我如何只有2个输出文件(奇数和偶数),以便每个map-reduce的每个奇数输出都被写入该奇数文件,并且偶数相同。
答案 0 :(得分:3)
每个reducer使用OutputFormat将记录写入。这就是为什么每个reducer都会获得一组奇数和偶数文件的原因。这是设计使得每个reducer可以并行执行写入。
如果你只需要一个奇数和单个偶数文件,你需要将mapred.reduce.tasks设置为1.但是性能会受到影响,因为所有的映射器都会被送入一个减速器。
另一个选择是更改进程读取这些文件以接受多个输入文件,或者编写一个单独的进程将这些文件合并在一起。
答案 1 :(得分:3)
我为此写了一堂课。 只需将它用于你的工作:
job.setOutputFormatClass(m_customOutputFormatClass);
这是我的班级:
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/**
* TextOutputFormat extension which enables writing the mapper/reducer's output in multiple files.<br>
* <p>
* <b>WARNING</b>: The number of different folder shuoldn't be large for one mapper since we keep an
* {@link RecordWriter} instance per folder name.
* </p>
* <p>
* In this class the folder name is defined by the written entry's key.<br>
* To change this behavior simply extend this class and override the
* {@link HdMultipleFileOutputFormat#getFolderNameExtractor()} method and create your own
* {@link FolderNameExtractor} implementation.
* </p>
*
*
* @author ykesten
*
* @param <K> - Keys type
* @param <V> - Values type
*/
public class HdMultipleFileOutputFormat<K, V> extends TextOutputFormat<K, V> {
private String folderName;
private class MultipleFilesRecordWriter extends RecordWriter<K, V> {
private Map<String, RecordWriter<K, V>> fileNameToWriter;
private FolderNameExtractor<K, V> fileNameExtractor;
private TaskAttemptContext job;
public MultipleFilesRecordWriter(FolderNameExtractor<K, V> fileNameExtractor, TaskAttemptContext job) {
fileNameToWriter = new HashMap<String, RecordWriter<K, V>>();
this.fileNameExtractor = fileNameExtractor;
this.job = job;
}
@Override
public void write(K key, V value) throws IOException, InterruptedException {
String fileName = fileNameExtractor.extractFolderName(key, value);
RecordWriter<K, V> writer = fileNameToWriter.get(fileName);
if (writer == null) {
writer = createNewWriter(fileName, fileNameToWriter, job);
if (writer == null) {
throw new IOException("Unable to create writer for path: " + fileName);
}
}
writer.write(key, value);
}
@Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {
for (Entry<String, RecordWriter<K, V>> entry : fileNameToWriter.entrySet()) {
entry.getValue().close(context);
}
}
}
private synchronized RecordWriter<K, V> createNewWriter(String folderName,
Map<String, RecordWriter<K, V>> fileNameToWriter, TaskAttemptContext job) {
try {
this.folderName = folderName;
RecordWriter<K, V> writer = super.getRecordWriter(job);
this.folderName = null;
fileNameToWriter.put(folderName, writer);
return writer;
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
@Override
public Path getDefaultWorkFile(TaskAttemptContext context, String extension) throws IOException {
Path path = super.getDefaultWorkFile(context, extension);
if (folderName != null) {
String newPath = path.getParent().toString() + "/" + folderName + "/" + path.getName();
path = new Path(newPath);
}
return path;
}
@Override
public RecordWriter<K, V> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
return new MultipleFilesRecordWriter(getFolderNameExtractor(), job);
}
public FolderNameExtractor<K, V> getFolderNameExtractor() {
return new KeyFolderNameExtractor<K, V>();
}
public interface FolderNameExtractor<K, V> {
public String extractFolderName(K key, V value);
}
private static class KeyFolderNameExtractor<K, V> implements FolderNameExtractor<K, V> {
public String extractFolderName(K key, V value) {
return key.toString();
}
}
}
答案 2 :(得分:1)
将根据减速器的数量生成多个输出文件。
您可以使用hadoop dfs -getmerge合并输出