我正在尝试在Spark中运行随机森林算法但我需要功能重要性。可以任何人建议如何获得功能重要性。
这是我试过的代码
public final class RandomForestMlib {
private static final Pattern SPACE = Pattern.compile(" ");
@SuppressWarnings("serial")
public static void main(String[] args) throws Exception {
/*if (args.length < 1) {
System.err.println("Usage: JavaWordCount <file>");
System.exit(1);
}*/
//String masterUrl = "spark://192.168.228.128:7077";
SparkConf sparkConf = new SparkConf().setAppName("GRP").setMaster("local[*]");
SparkContext ctx = new SparkContext(sparkConf);
String path = "dataSetnew.txt";
JavaRDD < LabeledPoint > rdd = MLUtils.loadLibSVMFile(ctx, path).toJavaRDD();
// RDD<LabeledPoint> rddnew = rdd.toRDD(null);
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(ctx);
//RDD<LabeledPoint> rdd = MLUtils.loadLibSVMFile(sc.sc(), "data/mllib/sample_libsvm_data.txt");
DataFrame data = sqlContext.createDataFrame(rdd, LabeledPoint.class);
// Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
StringIndexerModel labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data);
// Automatically identify categorical features, and index them.
// Set maxCategories so features with > 4 distinct values are treated as continuous.
VectorIndexerModel featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.fit(data);
Map < Integer, Map < Double, Integer >> categoryMaps = featureIndexer.javaCategoryMaps();
System.out.print("Chose " + categoryMaps.size() + " categorical features:");
for (Integer feature: categoryMaps.keySet()) {
System.out.print(" " + feature);
Map < Double, Integer > val = categoryMaps.get(feature);
System.out.print(" ");
Set < Double > ctr = val.keySet();
Iterator < Double > itr = ctr.iterator();
for (; itr.hasNext();) {
System.out.println("value :" + val.get(itr.next()));
}
}
System.out.println();
// Split the data into training and test sets (30% held out for testing)
DataFrame[] splits = data.randomSplit(new double[] {
0.7,
0.3
});
DataFrame trainingData = splits[0];
DataFrame testData = splits[1];
//data.show();
// Train a RandomForest model.
RandomForestClassifier rf = new RandomForestClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures");
// Convert indexed labels back to original labels.
IndexToString labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels());
// Chain indexers and forest in a Pipeline
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[] {
labelIndexer,
featureIndexer,
rf,
labelConverter
});
// Train model. This also runs the indexers.
PipelineModel model = pipeline.fit(trainingData);
// Make predictions.
DataFrame predictions = model.transform(testData);
// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5);
// Select (prediction, true label) and compute test error
/* MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("indexedLabel")
.setPredictionCol("prediction")
.setMetricName("precision");
double accuracy = evaluator.evaluate(predictions);
System.out.println("Test Error = " + (1.0 - accuracy));
*/
RandomForestClassificationModel rfModel =
(RandomForestClassificationModel)(model.stages()[2]);
// System.out.println("Learned classification forest model:\n" + rfModel.toDebugString());
System.out.println("Stage 1" + model.stages()[1]);
System.out.println("Stage 2" + model.stages()[0]);
Transformer[] trans = model.stages();
System.out.println("length of the array :" + trans.length);
/* for(int i = 0 ; i <trans.length ; i++ ){
System.out.println("length :"+i+1);
}
*/
Vector featureImp = rfModel.featureImportances();
Vector denseVecnew = Vectors.dense(112, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0);
double pred = rfModel.predict(denseVecnew);
System.out.println("Prediction : " + pred);
System.out.println(featureImp);
System.out.println("feature Size :" + featureImp.size());
System.out.println("featureIndexer :" + featureIndexer.numFeatures());
double[] importanceArray = featureImp.toArray();
double sum = 0;
for (int i = 0; i < importanceArray.length; i++) {
sum = sum + importanceArray[i];
System.out.println("importance for index " + i + " : " + importanceArray[i]);
}
System.out.println(" sum = " + sum);
ctx.stop();
}