评分在网格搜索中返回numpy.core.memmap而不是numpy.Number

时间:2016-01-18 15:05:40

标签: numpy scikit-learn joblib

我们能够(仅在我们的应用程序的上下文中)在Ubuntu 15.04和OS X上使用scikit 0.17重现在使用GridSearchCVLogisticRegression更大的数据集时出现以下问题。< / p>

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/pipeline.py in fit(self=Pipeline(steps=[('cpencoder', <cpml.whitebox.Lin...s', refit=True, scoring=u'roc_auc', verbose=1))]), X=                   Unnamed: 0  member_id  loan_a...          42.993346  

[152536 rows x 45 columns], y=array([0, 1, 0, ..., 1, 1, 0]), **fit_params={})
    160         y : iterable, default=None
    161             Training targets. Must fulfill label requirements for all steps of
    162             the pipeline.
    163         """
    164         Xt, fit_params = self._pre_transform(X, y, **fit_params)
--> 165         self.steps[-1][-1].fit(Xt, y, **fit_params)
        self.steps.fit = undefined
        Xt = array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]])
        y = array([0, 1, 0, ..., 1, 1, 0])
        fit_params = {}
    166         return self
    167 
    168     def fit_transform(self, X, y=None, **fit_params):
    169         """Fit all the transforms one after the other and transform the

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/grid_search.py in fit(self=GridSearchCV(cv=None, error_score='raise',
     ...jobs', refit=True, scoring=u'roc_auc', verbose=1), X=array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]]), y=array([0, 1, 0, ..., 1, 1, 0]))
    799         y : array-like, shape = [n_samples] or [n_samples, n_output], optional
    800             Target relative to X for classification or regression;
    801             None for unsupervised learning.
    802 
    803         """
--> 804         return self._fit(X, y, ParameterGrid(self.param_grid))
        self._fit = <bound method GridSearchCV._fit of GridSearchCV(...obs', refit=True, scoring=u'roc_auc', verbose=1)>
        X = array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]])
        y = array([0, 1, 0, ..., 1, 1, 0])
        self.param_grid = {'C': [1], 'class_weight': ['auto'], 'fit_intercept': [False], 'intercept_scaling': [1], 'penalty': ['l2']}
    805 
    806 
    807 class RandomizedSearchCV(BaseSearchCV):
    808     """Randomized search on hyper parameters.

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/grid_search.py in _fit(self=GridSearchCV(cv=None, error_score='raise',
     ...jobs', refit=True, scoring=u'roc_auc', verbose=1), X=array([[  0.00000000e+00,   1.29659900e+06,   5....000000e+00,   0.00000000e+00,   4.29933458e+01]]), y=array([0, 1, 0, ..., 1, 1, 0]), parameter_iterable=<sklearn.grid_search.ParameterGrid object>)
    548         )(
    549             delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_,
    550                                     train, test, self.verbose, parameters,
    551                                     self.fit_params, return_parameters=True,
    552                                     error_score=self.error_score)
--> 553                 for parameters in parameter_iterable
        parameters = undefined
        parameter_iterable = <sklearn.grid_search.ParameterGrid object>
    554                 for train, test in cv)
    555 
    556         # Out is a list of triplet: score, estimator, n_test_samples
    557         n_fits = len(out)

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py in __call__(self=Parallel(n_jobs=2), iterable=<generator object <genexpr>>)
    807             if pre_dispatch == "all" or n_jobs == 1:
    808                 # The iterable was consumed all at once by the above for loop.
    809                 # No need to wait for async callbacks to trigger to
    810                 # consumption.
    811                 self._iterating = False
--> 812             self.retrieve()
        self.retrieve = <bound method Parallel.retrieve of Parallel(n_jobs=2)>
    813             # Make sure that we get a last message telling us we are done
    814             elapsed_time = time.time() - self._start_time
    815             self._print('Done %3i out of %3i | elapsed: %s finished',
    816                         (len(self._output), len(self._output),

---------------------------------------------------------------------------
Sub-process traceback:
---------------------------------------------------------------------------
ValueError                                         Mon Jan 18 11:58:09 2016
PID: 71840 Python 2.7.10: /Users/samuelhopkins/.virtualenvs/cpml/bin/python
...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self=<sklearn.externals.joblib.parallel.BatchedCalls object>)
     67     def __init__(self, iterator_slice):
     68         self.items = list(iterator_slice)
     69         self._size = len(self.items)
     70 
     71     def __call__(self):
---> 72         return [func(*args, **kwargs) for func, args, kwargs in self.items]
     73 
     74     def __len__(self):
     75         return self._size
     76 

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/cross_validation.pyc in _fit_and_score(estimator=LogisticRegression(C=1, class_weight='auto', dua...         tol=0.0001, verbose=0, warm_start=False), X=memmap([[  0.00000000e+00,   1.29659900e+06,   5...000000e+00,   0.00000000e+00,   4.29933458e+01]]), y=memmap([0, 1, 0, ..., 1, 1, 0]), scorer=make_scorer(roc_auc_score, needs_threshold=True), train=array([ 49100,  49101,  49102, ..., 152533, 152534, 152535]), test=array([    0,     1,     2, ..., 57517, 57522, 57532]), verbose=1, parameters={'C': 1, 'class_weight': 'auto', 'fit_intercept': False, 'intercept_scaling': 1, 'penalty': 'l2'}, fit_params={}, return_train_score=False, return_parameters=True, error_score='raise')
   1545                              " numeric value. (Hint: if using 'raise', please"
   1546                              " make sure that it has been spelled correctly.)"
   1547                              )
   1548 
   1549     else:
-> 1550         test_score = _score(estimator, X_test, y_test, scorer)
   1551         if return_train_score:
   1552             train_score = _score(estimator, X_train, y_train, scorer)
   1553 
   1554     scoring_time = time.time() - start_time

...........................................................................
/Users/samuelhopkins/.virtualenvs/cpml/lib/python2.7/site-packages/sklearn/cross_validation.pyc in _score(estimator=LogisticRegression(C=1, class_weight='auto', dua...         tol=0.0001, verbose=0, warm_start=False), X_test=memmap([[  0.00000000e+00,   1.29659900e+06,   5...000000e+01,   0.00000000e+00,   4.29933458e+01]]), y_test=memmap([0, 1, 0, ..., 1, 1, 1]), scorer=make_scorer(roc_auc_score, needs_threshold=True))
   1604         score = scorer(estimator, X_test)
   1605     else:
   1606         score = scorer(estimator, X_test, y_test)
   1607     if not isinstance(score, numbers.Number):
   1608         raise ValueError("scoring must return a number, got %s (%s) instead."
-> 1609                          % (str(score), type(score)))
   1610     return score
   1611 
   1612 
   1613 def _permutation_test_score(estimator, X, y, cv, scorer):

ValueError: scoring must return a number, got 0.998981811748 (<class 'numpy.core.memmap.memmap'>) instead.

我们已经多次尝试在应用程序的上下文之外重现它,但没有任何运气。我们对cross_validation.py进行了以下更改,它修复了我们的特定问题:

...

if isinstance(score, np.core.memmap):
   score = np.float(score)
if not isinstance(score, numbers.Number):
    raise ValueError("scoring must return a number, got %s (%s) instead."

...

更多信息:

  • 我们在python 2.7
  • 我们使用Pipeline确保所有输入都是数字

我的问题如下:

  • 我们如何才能重现此问题,以使scorer返回memmap
  • 还有其他人有这个特殊问题吗?
  • 我们在cross_validation.py中所做的更改实际上是一个不错的解决方案吗?

1 个答案:

答案 0 :(得分:1)

是的,有一个类似的案例

由于内存分配的O / S限制,我爱上了.memmap - s我认为.fit() - 用于大规模机器学习的智能工具,使用&#39; em sklearn -s和其他GridSearchCV()方法。 (HyperPARAMETER目前还不是这种情况,因为预先分配内存对n_jobs = -1网格的大numpy.ndarray个&#39;

的影响

我们怎么样......重现...?据我记忆,我的情况类似,而且#&#34;普通&#34; numpy.memmap().memmap()启动了这些工件。因此,如果您努力人工创建一个这样的数据,请将数据包装成数组的.memmap()-ed表示并使其返回,即使在包含单个数据单元而不是普通数字时也是如此。人们应该接收到该单元格的通用数组表示的.memmap() - ed子范围的视图。

改变是一个不错的解决方案吗?好吧,我通过引用结果&#39;显式返回一个单元格值来摆脱[0]-ed包装器。 s .float() 组件。 {{1}}强制转换似乎没问题。