我有以下代码。 如果单击运行按钮,则可以找到两个 直方图并排。
但两者的规模是不同的。第一个面板具有比例10^80
另一个0 to 1
。现在,我如何让面板1显示值
在y轴上。它是隐藏的,因为它对两个面板使用相同的比例。
"use strict";
var histograms,
thresholds = [];
var input_data = [
{
"threshold": 1.5,
"histograms": [
{
"sample": "Sample1",
"nof_genes": 19129,
"values": [
{
"score": 5.2839221064745636e+81,
"celltype": "Bcells"
},
{
"score": 2.872412166929766e+81,
"celltype": "DendriticCells"
},
{
"score": 4.82196178030352e+82,
"celltype": "Macrophages"
},
{
"score": 3.0208554096649809e+81,
"celltype": "Monocytes"
},
{
"score": 4.3508855197536809e+81,
"celltype": "NKCells"
},
{
"score": 1.5968403865969863e+81,
"celltype": "Neutrophils"
},
{
"score": 1.3068775298727331e+81,
"celltype": "StemCells"
},
{
"score": 3.2760591738950675e+81,
"celltype": "StromalCells"
},
{
"score": 4.3269886854125076e+81,
"celltype": "abTcells"
},
{
"score": 2.3123698863774207e+81,
"celltype": "gdTCells"
}
]
},
{
"sample": "Sample2",
"nof_genes": 18438,
"values": [
{
"score": 0.023526831259537202,
"celltype": "Bcells"
},
{
"score": 0.031062202944392724,
"celltype": "DendriticCells"
},
{
"score": 0.50894644580920867,
"celltype": "Macrophages"
},
{
"score": 0.042631083422661434,
"celltype": "Monocytes"
},
{
"score": 0.025050910895619175,
"celltype": "NKCells"
},
{
"score": 0.049479227373385677,
"celltype": "Neutrophils"
},
{
"score": 0.024014917699970516,
"celltype": "StemCells"
},
{
"score": 0.09955841150737077,
"celltype": "StromalCells"
},
{
"score": 0.024245068851487257,
"celltype": "abTcells"
},
{
"score": 0.024223805083276869,
"celltype": "gdTCells"
}
]
},
]
},
{
"threshold": 2,
"histograms": [
{
"sample": "Sample1",
"nof_genes": 19129,
"values": [
{
"score": 1.2839221064745636e+81,
"celltype": "Bcells"
},
{
"score": 1.872412166929766e+81,
"celltype": "DendriticCells"
},
{
"score": 4.82196178030352e+82,
"celltype": "Macrophages"
},
{
"score": 3.0208554096649809e+81,
"celltype": "Monocytes"
},
{
"score": 1.3508855197536809e+81,
"celltype": "NKCells"
},
{
"score": 3.5968403865969863e+81,
"celltype": "Neutrophils"
},
{
"score": 1.3068775298727331e+81,
"celltype": "StemCells"
},
{
"score": 8.2760591738950675e+81,
"celltype": "StromalCells"
},
{
"score": 1.3269886854125076e+81,
"celltype": "abTcells"
},
{
"score": 1.3123698863774207e+81,
"celltype": "gdTCells"
}
]
},
{
"sample": "Sample2",
"nof_genes": 18438,
"values": [
{
"score": 0.013526831259537202,
"celltype": "Bcells"
},
{
"score": 0.021062202944392724,
"celltype": "DendriticCells"
},
{
"score": 0.20894644580920867,
"celltype": "Macrophages"
},
{
"score": 0.042631083422661434,
"celltype": "Monocytes"
},
{
"score": 0.025050910895619175,
"celltype": "NKCells"
},
{
"score": 0.049479227373385677,
"celltype": "Neutrophils"
},
{
"score": 0.024014917699970516,
"celltype": "StemCells"
},
{
"score": 0.09955841150737077,
"celltype": "StromalCells"
},
{
"score": 0.024245068851487257,
"celltype": "abTcells"
},
{
"score": 0.024223805083276869,
"celltype": "gdTCells"
}
]
},
]
},
];
processData(input_data);
function processData(data) {
histograms = data[0].histograms.map(function(data) {
return {
title: data.sample,
dataset: new Plottable.Dataset(),
axisLabel: new Plottable.Components.AxisLabel(),
dataByThreshold: {},
nofGenesByThreshold: {},
load_nof_genes: function (threshold) {
this.axisLabel.text(this.nofGenesByThreshold[threshold] + 'genes');
},
load: function(threshold) {
this.dataset.data(this.dataByThreshold[threshold]);
}
};
});
data.forEach(function(data) {
var threshold = data.threshold;
thresholds.push(threshold);
data.histograms.forEach(function(histogram, i) {
histograms[i].dataByThreshold[threshold] = histogram.values;
histograms[i].nofGenesByThreshold[threshold] = histogram.nof_genes;
});
});
// Here we generalize the slide bar maximum threshold
$('#threshold').attr('max', thresholds.length - 1);
updateDatasets(thresholds[0]);
updateNofGenes(thresholds[0]);
buildPlots();
updateThreshold();
}
$('#threshold').change(updateThreshold);
function updateThreshold() {
// This is where the user input updating slider
// takes place and where the QTIP is in action.
var thresholdIndex = parseInt($('#threshold').val(), 10);
$("#foldchange_threshold").html(thresholds[thresholdIndex]);
updateDatasets(thresholds[thresholdIndex]);
updateNofGenes(thresholds[thresholdIndex]);
$(".tooltipped .content rect").qtip({
overwrite: true,
position: {
my: "bottom middle",
at: "top middle"
},
style: {
classes: "qtip-light"
},
content: {
text: function() {
return $(this).attr("qtip2-title");
}
}
});
}
function updateDatasets(threshold) {
histograms.forEach(function(histogram) {
histogram.load(threshold);
});
}
function updateNofGenes (threshold) {
histograms.forEach(function (histogram) {
histogram.load_nof_genes(threshold);
});
}
function buildPlots() {
var $histogramContainer = $('#sample-histograms');
histograms.forEach(function(histogram, index) {
var elementId = "sample-histogram-" + index;
$(document.createElementNS('http://www.w3.org/2000/svg', 'svg'))
.css({
width: '200px',
height: '200px',
display: 'inline-block'
})
.attr('id', elementId)
.appendTo($histogramContainer);
plotSampleHistogram(histogram, '#' + elementId);
});
}
function plotSampleHistogram(histogram, targetElement) {
var xScale = new Plottable.Scales.Category(),
yScale = new Plottable.Scales.Linear(),
colorScale = new Plottable.Scales.Color();
var xAxis = new Plottable.Axes.Category(xScale, "bottom"),
yAxis = new Plottable.Axes.Numeric(yScale, "left"),
titleLabel = new Plottable.Components.TitleLabel(histogram.title);
xAxis.tickLabelAngle(-90)
yScale.domainMin(0);
var plot = new Plottable.Plots.Bar()
.addDataset(histogram.dataset)
.x(function(d) { return d.celltype; }, xScale)
.y(function(d) { return d.score; }, yScale)
.attr("fill", function(d) { return d.celltype; }, colorScale)
.attr("qtip2-title", function(d) { return '<div class="bartip">' + d.celltype + " (" + d.score.toFixed(2) + ') </div>'; })
.addClass("tooltipped");
new Plottable.Components.Table([
[null, titleLabel],
[null, histogram.axisLabel],
[yAxis, plot],
[null, xAxis]
]).renderTo(targetElement);
}
function drawHistogramLegend(targetElement) {
new Plottable.Components.Legend(colorScale)
.renderTo(targetElement);
}
&#13;
<html>
<head>
<link href="https://cdnjs.cloudflare.com/ajax/libs/plottable.js/1.15.0/plottable.css" rel="stylesheet" />
<link href="https://cdnjs.cloudflare.com/ajax/libs/qtip2/2.2.1/basic/jquery.qtip.css" rel="stylesheet" />
</head>
<body>
<!-- Display the sliding bar -->
<input id="threshold" type="range" min="0" max="1" step="1" value="0" />
<br>
<!-- Show foldchange threshold -->
<div id="foldchange_threshold" style="display: inline-block; align:center;"></div>
<!-- Show histograms -->
<div id="sample-histograms"></div>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/3.10.1/lodash.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.4.11/d3.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/plottable.js/1.15.0/plottable.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/qtip2/2.2.1/basic/jquery.qtip.js"></script>
</body>
</html>
&#13;
答案 0 :(得分:0)
我认为你不应该对两者使用相同的比例。
Plottable scale是像素和数据域之间的关系。
如果这两个图具有相同的像素高度,但具有不同的域,则它们需要不同的比例。