我在快速矿工中设置了一个示例。它有2列。 例如
colA colB
a 1
a 2
b 3
b 2
=====
我使用了朴素的贝叶斯。它给出了分布表中colA的每个colB的概率。
例如,P(2) = .5
I need that distribution table output.
write model, excel csv, write does not help.
我该怎么办? 提前谢谢。
答案 0 :(得分:1)
最简单的解决方案是用鼠标标记表格(Strg + A也可以),并使用复制和粘贴。
不幸的是,这只能手动工作,如果你必须经常导出数据,下一个最好的步骤就是为它编写自己的操作符(这实际上很简单,只需要基本的Java技能): http://docs.rapidminer.com/developers/
答案 1 :(得分:0)
是的,你可以。如果您从市场安装Reporting扩展(它是免费的),那么您可以导出分发表,绘图视图或文本视图。
这是一个示例流程。
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="7.0.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="reporting:generate_report" compatibility="5.3.000" expanded="true" height="68" name="Generate Report" width="90" x="45" y="34">
<parameter key="report_name" value="myReport"/>
</operator>
<operator activated="true" class="retrieve" compatibility="7.0.000" expanded="true" height="68" name="Golf" width="90" x="112" y="85">
<parameter key="repository_entry" value="//Samples/data/Golf"/>
</operator>
<operator activated="true" class="retrieve" compatibility="7.0.000" expanded="true" height="68" name="Golf-Testset" width="90" x="179" y="210">
<parameter key="repository_entry" value="//Samples/data/Golf-Testset"/>
</operator>
<operator activated="true" class="naive_bayes" compatibility="7.0.000" expanded="true" height="82" name="Naive Bayes" width="90" x="246" y="34"/>
<operator activated="true" class="reporting:report" compatibility="5.3.000" expanded="true" height="68" name="Report" width="90" x="380" y="34">
<parameter key="report_name" value="myReport"/>
<parameter key="report_item_header" value="Distribution Table"/>
<parameter key="specified" value="true"/>
<parameter key="reportable_type" value="Distribution Model"/>
<parameter key="renderer_name" value="Distribution Table"/>
<list key="parameters">
<parameter key="min_row" value="1"/>
<parameter key="max_row" value="2147483647"/>
<parameter key="min_column" value="1"/>
<parameter key="max_column" value="2147483647"/>
<parameter key="sort_column" value="2147483647"/>
<parameter key="sort_decreasing" value="false"/>
</list>
</operator>
<operator activated="true" class="apply_model" compatibility="7.0.000" expanded="true" height="82" name="Apply Model" width="90" x="514" y="120">
<list key="application_parameters"/>
</operator>
<connect from_op="Golf" from_port="output" to_op="Naive Bayes" to_port="training set"/>
<connect from_op="Golf-Testset" from_port="output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Naive Bayes" from_port="model" to_op="Report" to_port="reportable in"/>
<connect from_op="Report" from_port="reportable out" to_op="Apply Model" to_port="model"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="90"/>
<portSpacing port="sink_result 2" spacing="18"/>
</process>
</operator>
</process>