我是Cuda编程的新手。
我想要做的只是实现矩阵的arctan的功能。 为了了解如何与OpenCV进行交互,我从OpenCV的双边过滤器实现(cudaimgproc之一)中获取了我的代码。
所以我写了atan.hpp:
#ifndef ATAN_HPP
#define ATAN_HPP
#include <opencv2/core.hpp>
#include <opencv2/core/cuda.hpp>
namespace support
{
namespace cuda
{
void atan(cv::InputArray _src,cv::OutputArray _dst,cv::cuda::Stream& stream = cv::cuda::Stream::Null());
}
}
#endif // ATAN_HPP
然后是atan.cpp
#include "atan.hpp"
#include <opencv2/core/cuda.hpp>
#include <opencv2/cudev/common.hpp>
namespace support
{
namespace cuda
{
namespace device
{
template<class _Ty>
void atan_(const cv::cuda::PtrStepSzb& src, cv::cuda::PtrStepSzb dst,cudaStream_t);
}
void atan(cv::InputArray _src, cv::OutputArray _dst, cv::cuda::Stream &stream)
{
CV_Assert(
(_src.depth() == _src.type()) &&
(_src.isMat() || _src.isUMat() || ((_src.kind() & cv::_InputArray::CUDA_GPU_MAT) == cv::_InputArray::CUDA_GPU_MAT)) &&
(_dst.isMat() || _dst.isUMat() || ((_dst.kind() & cv::_OutputArray::CUDA_GPU_MAT) == cv::_OutputArray::CUDA_GPU_MAT))
);
cv::cuda::GpuMat src;
cv::cuda::GpuMat buf;
int type = _src.isMat() ? 0 : _src.isUMat() ? 1 : 2;
switch(type)
{
case 0:
{
cv::Mat tmp = _src.getMat();
src.upload(tmp);
}
break;
case 1:
{
cv::UMat tmp = _src.getUMat();
cv::Mat tmp2;
tmp.copyTo(tmp2);
src.upload(tmp2);
}
break;
case 2:
src = _src.getGpuMat();
break;
}
buf.create(src.size(),src.type());
// buf.upload(cv::Mat::zeros(src.size(),src.type()));
switch (buf.depth())
{
case CV_8U:
device::atan_<uchar>(src,buf, cv::cuda::StreamAccessor::getStream(stream));
break;
case CV_8S:
device::atan_<char>(src,buf, cv::cuda::StreamAccessor::getStream(stream));
break;
case CV_16U:
device::atan_<ushort>(src,buf, cv::cuda::StreamAccessor::getStream(stream));
break;
case CV_16S:
device::atan_<short>(src,buf, cv::cuda::StreamAccessor::getStream(stream));
break;
case CV_32S:
device::atan_<int>(src,buf, cv::cuda::StreamAccessor::getStream(stream));
break;
case CV_32F:
device::atan_<float>(src,buf, cv::cuda::StreamAccessor::getStream(stream));
break;
case CV_64F:
device::atan_<double>(src,buf, cv::cuda::StreamAccessor::getStream(stream));
break;
}
type = _dst.isMat() ? 0 : _dst.isUMat() ? 1 : 2;
switch(type)
{
case 0:
{
cv::Mat tmp;
buf.download(tmp);
}
break;
case 1:
{
cv::Mat tmp;
cv::UMat tmp2;
buf.download(tmp);
tmp.copyTo(tmp2);
}
break;
case 2:
buf.copyTo(_dst);
break;
}
}
}
}
最后atan .cu
#include <opencv2/core/cuda/common.hpp>
typedef unsigned char uchar;
typedef unsigned short ushort;
namespace support
{
namespace cuda
{
namespace device
{
template<class _Ty>
__global__ void katan(const cv::cuda::PtrStepSz<_Ty>& src, cv::cuda::PtrStep<_Ty> dst)
{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if( (y>=src.rows) && (x>=src.cols) )
return;
dst(y,x) = ::atan(static_cast<double>(src(y,x)));
}
template<class _Ty>
void atan_(const cv::cuda::PtrStepSzb& src, cv::cuda::PtrStepSzb dst,cudaStream_t stream)
{
dim3 block (32, 8);
dim3 grid ( cv::cuda::device::divUp (src.cols, block.x), cv::cuda::device::divUp (src.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig (katan<_Ty>, cudaFuncCachePreferL1) );
katan<<<grid, block, 0, stream>>>(( cv::cuda::PtrStepSz<_Ty>)src, ( cv::cuda::PtrStepSz<_Ty>)dst);
cudaSafeCall ( cudaGetLastError () );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
}
}
#define INSTANTIATE_ATAN(T) \
template void support::cuda::device::atan_<T>(const cv::cuda::PtrStepSzb&, cv::cuda::PtrStepSzb, cudaStream_t);
INSTANTIATE_ATAN(uchar)
INSTANTIATE_ATAN(char)
INSTANTIATE_ATAN(ushort)
INSTANTIATE_ATAN(short)
INSTANTIATE_ATAN(int)
INSTANTIATE_ATAN(float)
INSTANTIATE_ATAN(double)
我创建了一个最小例子,以检查它是否有效:
main.cpp:
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/core/cuda.hpp>
#include "atan.hpp"
int main(int argc,char* argv[])
{
typedef float type;
cv::Mat_<type> input(32,32);
cv::Mat_<type> output(input.size());
std::for_each(input.begin(),input.end(),[&](type& v){ v = cv::theRNG().uniform(1.,100.);});
std::transform(input.begin(),input.end(),output.begin(),[&](const type& v){ return std::atan(v); });
cv::cuda::GpuMat buf;
buf.upload(input);
support::cuda::atan(buf,buf);
cv::Mat tmp;
buf.download(tmp);
std::cout<<tmp<<std::endl;
std::cout << "Hello World!" << std::endl;
return EXIT_SUCCESS;
}
它编译得很好,但是当我尝试执行时,我有这个例外:
OpenCV错误:atan_中的Gpu API调用(遇到非法内存访问),文件../bilateral/atan.cu,第51行 在抛出&#39; cv :: Exception&#39;的实例后终止调用 what():.. / bilateral / atan.cu:51:错误:(-217)在函数atan _中遇到非法内存访问_
对谷歌的快速研究让我明白这个错误的根源可能是多种多样的。
我想了解我的代码有什么问题。
提前感谢您的帮助。
答案 0 :(得分:0)
在katan
内核中,src
应该通过值而不是const引用传递。请记住,在调用者端,src
驻留在主机内存端,因此通过引用传递不会导致任何主机到设备内存副本,这意味着在katan
内核中,src
也是主办方。您无法在内核代码中访问主机内存。按值传递将暗示设备内存副本的隐式主机,因此可以。
我相信它应该是||
中的if( (y>=src.rows) && (x>=src.cols) )
?