我在SQL Server的数据库表中有以下数据:
MIMMAXPOINTS
Val_B
列实际上应包含最低Vector
,'BELOW'
为Val_A
,最高Vector
,'ABOVE'
为MINMAXPOINTS
}}。因此,我们在MINMAXPOINTS
68.40
68.40
82.40
82.40
82.40
82.40
72.29
81.75
81.75
81.75
中有以下值:
In [32]: import numpy as np
In [33]: list_of_arrays = list(map(lambda x: x * np.ones(2), range(5)))
In [34]: list_of_arrays
Out[34]:
[array([ 0., 0.]),
array([ 1., 1.]),
array([ 2., 2.]),
array([ 3., 3.]),
array([ 4., 4.])]
In [37]: shape = list(list_of_arrays[0].shape)
In [38]: shape
Out[38]: [2]
In [39]: shape[:0] = [len(list_of_arrays)]
In [40]: shape
Out[40]: [5, 2]
In [41]: arr = np.concatenate(list_of_arrays).reshape(shape)
In [42]: arr
Out[42]:
array([[ 0., 0.],
[ 1., 1.],
[ 2., 2.],
[ 3., 3.],
[ 4., 4.]])
没有光标可以吗?
任何帮助将不胜感激!。
答案 0 :(得分:1)
首先应用经典gaps-and-islands
来确定组(差距/岛/上/下),然后为每个组计算MIN
和MAX
。
我假设ID
列定义了行的顺序。
在SQL Server 2008上测试。这是SQL Fiddle。
示例数据
DECLARE @T TABLE
([Id] int, [dt] date, [Val_A] float, [Val_B] float, [Val_C] float, [Avg] float,
[Vector] varchar(5));
INSERT INTO @T ([Id], [dt], [Val_A], [Val_B], [Val_C], [Avg], [Vector]) VALUES
(329, '2016-01-15', 78.09, 68.40, 70.29, 76.50, 'BELOW'),
(328, '2016-01-14', 79.79, 75.40, 76.65, 76.67, 'BELOW'),
(327, '2016-01-13', 81.15, 74.59, 79.00, 76.44, 'ABOVE'),
(326, '2016-01-12', 81.95, 77.04, 78.95, 76.04, 'ABOVE'),
(325, '2016-01-11', 82.40, 73.65, 81.34, 75.47, 'ABOVE'),
(324, '2016-01-08', 78.75, 73.40, 77.20, 74.47, 'ABOVE'),
(323, '2016-01-07', 76.40, 72.29, 72.95, 73.74, 'BELOW'),
(322, '2016-01-06', 81.25, 77.70, 78.34, 73.12, 'ABOVE'),
(321, '2016-01-05', 81.75, 76.34, 80.54, 72.08, 'ABOVE'),
(320, '2016-01-04', 80.95, 75.15, 76.29, 70.86, 'ABOVE');
<强>查询强>
更好地了解它的工作原理,检查每个CTE的结果。
CTE_RowNumbers
计算两个行号序列。
CTE_Groups
为每个组分配一个号码(上/下)。
CTE_MinMax
为每个小组计算MIN/MAX
。
最终SELECT
选择MIN
或MAX
返回。
WITH
CTE_RowNumbers
AS
(
SELECT [Id], [dt], [Val_A], [Val_B], [Val_C], [Avg], [Vector]
,ROW_NUMBER() OVER (ORDER BY ID DESC) AS rn1
,ROW_NUMBER() OVER (PARTITION BY Vector ORDER BY ID DESC) AS rn2
FROM @T
)
,CTE_Groups
AS
(
SELECT [Id], [dt], [Val_A], [Val_B], [Val_C], [Avg], [Vector]
,rn1-rn2 AS Groups
FROM CTE_RowNumbers
)
,CTE_MinMax
AS
(
SELECT [Id], [dt], [Val_A], [Val_B], [Val_C], [Avg], [Vector]
,MAX(Val_A) OVER(PARTITION BY Groups) AS MaxA
,MIN(Val_B) OVER(PARTITION BY Groups) AS MinB
FROM CTE_Groups
)
SELECT [Id], [dt], [Val_A], [Val_B], [Val_C], [Avg], [Vector]
,CASE
WHEN [Vector] = 'BELOW' THEN MinB
WHEN [Vector] = 'ABOVE' THEN MaxA
END AS MINMAXPOINTS
FROM CTE_MinMax
ORDER BY ID DESC;
<强>结果强>
+-----+------------+-------+-------+-------+-------+--------+--------------+
| Id | dt | Val_A | Val_B | Val_C | Avg | Vector | MINMAXPOINTS |
+-----+------------+-------+-------+-------+-------+--------+--------------+
| 329 | 2016-01-15 | 78.09 | 68.4 | 70.29 | 76.5 | BELOW | 68.4 |
| 328 | 2016-01-14 | 79.79 | 75.4 | 76.65 | 76.67 | BELOW | 68.4 |
| 327 | 2016-01-13 | 81.15 | 74.59 | 79 | 76.44 | ABOVE | 82.4 |
| 326 | 2016-01-12 | 81.95 | 77.04 | 78.95 | 76.04 | ABOVE | 82.4 |
| 325 | 2016-01-11 | 82.4 | 73.65 | 81.34 | 75.47 | ABOVE | 82.4 |
| 324 | 2016-01-08 | 78.75 | 73.4 | 77.2 | 74.47 | ABOVE | 82.4 |
| 323 | 2016-01-07 | 76.4 | 72.29 | 72.95 | 73.74 | BELOW | 72.29 |
| 322 | 2016-01-06 | 81.25 | 77.7 | 78.34 | 73.12 | ABOVE | 81.75 |
| 321 | 2016-01-05 | 81.75 | 76.34 | 80.54 | 72.08 | ABOVE | 81.75 |
| 320 | 2016-01-04 | 80.95 | 75.15 | 76.29 | 70.86 | ABOVE | 81.75 |
+-----+------------+-------+-------+-------+-------+--------+--------------+
答案 1 :(得分:0)
您可以使用以下查询使用案例陈述,您可以根据每行的向量值选择条件值。
查询
SELECT ID, DATE, VAL_A, VAL_B, VAL_C, AVG, VECTOR,
CASE
WHEN VECTOR = 'BELOW' THEN (SELECT MIN(VAL_B) FROM TABLE A)
WHEN VECTOR = 'ABOVE' THEN (SELECT MAX(VAL_A) FROM TABLE A)
END AS MINMAXVALUE
FROM TABLE B
GO
检查这是否对您有帮助。
答案 2 :(得分:0)
修改查询以检查大于当前记录的数据组 您可以使用以下查询使用案例陈述,您可以根据每行的矢量值选择条件值。
查询
SELECT ID, DATE, VAL_A, VAL_B, VAL_C, AVG, VECTOR,
CASE
WHEN VECTOR = 'BELOW' THEN (SELECT MIN(VAL_B) FROM TABLE A WHERE ROWID >= B.ROWID)
WHEN VECTOR = 'ABOVE' THEN (SELECT MAX(VAL_A) FROM TABLE A WHERE ROWID >= B.ROWID)
END AS MINMAXVALUE
FROM TABLE B
GO
检查这应该产生您期望从数据中获得的结果。