Tutorialorflow中的Tensorflow不兼容的形状错误

时间:2016-01-16 00:41:01

标签: tensorflow

我一直试图从Tensorflow tutorial创建卷积网络,但我遇到了麻烦。出于某种原因,我遇到的错误是y_conv的大小比y_的大小大4倍,我不明白为什么。我找到this question,但它看起来与我的问题不同,尽管看起来很相似。

要清楚,下面代码中的批量大小是50,但它出现的错误是

  

tensorflow.python.framework.errors.InvalidArgumentError:不兼容的形状:[200]与[50]

当我将批量大小更改为10时,我得到了

  

tensorflow.python.framework.errors.InvalidArgumentError:不兼容的形状:[40]与[10]

因此它与批量大小有关,但我无法弄明白。谁能告诉我这段代码有什么问题?它与上面链接的教程非常相似。

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

import tensorflow as tf
sess = tf.InteractiveSession()

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides = [1, 2, 2, 1], padding='SAME')

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

w_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

w_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_conv1, w_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

w_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y_conv, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

1 个答案:

答案 0 :(得分:5)

带有-1的重塑是线索。这不是批量大小错误的是图像大小。你将它展平为批量维度。

为什么图像尺寸错误?

在第二个转化中,您传递了conv1而不是pool1 conv2d(h_conv1, w_conv2)

就这样的管道而言,我喜欢在数据流过时使用1个名称。

开始使用调试器,这是值得的!