感知器收敛但返回奇数结果

时间:2016-01-15 21:32:53

标签: c++ neural-network artificial-intelligence perceptron

我用c ++制作了一个简单的感知器来研究AI,甚至跟着book(pt_br)我无法让我的感知器返回预期的结果,我试图调试并找到错误,但我没有成功。< / p>

我的算法AND门结果(A和B = Y):

0 && 0 = 0 
0 && 1 = 1
1 && 0 = 1
1 && 1 = 1

基本上它作为OR门或随机工作。

我试图跳到Peter Norving and Russel book,但是他对此进行了快速解释并且没有解释深度感知训练的深度。

我真的想学习这些内容的每一寸,所以我不想跳到Multilayer感知器而不做简单的工作,你能帮忙吗?

以下代码是操作的最小代码,并带有一些解释:

夏普功能:

int signal(float &sin){
    if(sin < 0)
        return 0;
    if(sin > 1)
        return 1;

    return round(sin);

}

感知器结构(W是权重):

struct perceptron{
    float w[3];
};

Perceptron培训:

perceptron startTraining(){
    //- Random factory generator
    long int t = static_cast<long int>(time(NULL));
    std::mt19937 gen;
    gen.seed(std::random_device()() + t);
    std::uniform_real_distribution<float> dist(0.0, 1.0);
    //--

    //-- Samples (-1 | x | y)
    float t0[][3] = {{-1,0,0},
                     {-1,0,1},
                     {-1,1,0},
                     {-1,1,1}};

    //-- Expected result
    short d [] = {0,0,0,1};

    perceptron per;

    per.w[0] = dist(gen);
    per.w[1] = dist(gen);
    per.w[2] = dist(gen);

    //-- print random numbers
    cout <<"INIT "<< "W0: " << per.w[0]  <<" W1: " << per.w[1] << " W2: " << per.w[2] << endl;

    const float n = 0.1; // Lerning rate N
    int saida =0;        // Output Y
    long int epo = 0;    // Simple Couter
    bool erro = true;    // Loop control

    while(erro){
        erro = false;
        for (int amost = 0; amost < 4; ++amost) {           // Repeat for the number of samples x0=-1, x1,x2
            float u=0;                                      // Variable for the somatory
            for (int entrad = 0; entrad < 3; ++entrad) {    // repeat for every sinaptic weight W0=θ , W1, W2
                u = u + (per.w[entrad] * t0[amost][entrad]);// U <- Weights * Inputs
            }
            // u=u-per.w[0];                                // some references sau to take θ and subtract from U, i tried but without success
            saida = signal(u);                              // returns 1 or 0
            cout << d[amost] << " <- esperado | encontrado ->   "<< saida<< endl;
            if(saida != d[amost]){                          // if the output is not equal to the expected value
                for (int ajust = 0; ajust < 3; ++ajust) {
                    per.w[ajust] = per.w[ajust] + n * (d[amost] - saida) * t0[amost][ajust]; // W <- W + ɳ * ((d - y) x) where
                    erro = true;                                                             // W: Weights, ɳ: Learning rate
                }                                                                            // d: Desired outputs, y: outputs
            }                                                                                // x: samples
            epo++;

        }
    }
    cout << "Epocas(Loops): " << epo << endl;
    return per;
}

主要有测试部分:

int main()
{
    perceptron per = startTraining();
    cout << "fim" << endl;
    cout << "W0: " << per.w[0]  <<" W1: " << per.w[1] << " W2: " << per.w[2] << endl;
    while(true){
        int x,y;
        cin >> x >> y;

        float u=0;
        u = (per.w[1] * x);
        u = u + (per.w[2] * y);
        //u=u-per.w[0];

        cout << signal(u) << endl;


}
    return 0;
}

1 个答案:

答案 0 :(得分:1)

main()中,重新启用您注释掉的行。或者,你可以像这样写它,使它更有启发性:

float u = 0.0f;

u += (per.w[0] * float (-1));
u += (per.w[1] * float (x));
u += (per.w[2] * float (y));

问题在于你训练了感知器有三个输入,第一个是硬连接到&#34; -1&#34; (使第一个重量w[0]表现为常数&#34;偏差&#34;)。因此,在您的训练功能中,您的u是所有三种体重输入产品的总和。 但是,在你发布的main()中,你完全省略了w [0],从而产生了错误的结果。