我正在使用joda.time.Datetime库将字符串转换为datetime字段,但它会抛出不受支持的异常 这是主要的类代码:
//create new var with input data without header
var inputDataWithoutHeader: RDD[String] = dropHeader(inputFile)
var inputDF1 = inputDataWithoutHeader.map(_.split(",")).map{p =>
val dateYMD: DateTime = DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss").parseDateTime(p(8))
testData(dateYMD)}.toDF().show()
p(8)是columnn,其数据类型为datetime,在类testData中定义,列的CSV数据的值为2013-02-17 00:00:00
这是testData类:
case class testData(StartDate: DateTime) { }
以下是我得到的错误:
线程中的异常" main"
java.lang.UnsupportedOperationException: Schema for type org.joda.time.DateTime is not supported
at org.apache.spark.sql.catalyst.ScalaReflection$class.schemaFor(ScalaReflection.scala:153)
at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:29)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$schemaFor$1.apply(ScalaReflection.scala:128)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$schemaFor$1.apply(ScalaReflection.scala:126)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.immutable.List.foreach(List.scala:318)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.apache.spark.sql.catalyst.ScalaReflection$class.schemaFor(ScalaReflection.scala:126)
at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:29)
at org.apache.spark.sql.catalyst.ScalaReflection$class.schemaFor(ScalaReflection.scala:64)
at org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:29)
at org.apache.spark.sql.SQLContext.createDataFrame(SQLContext.scala:361)
at org.apache.spark.sql.SQLImplicits.rddToDataFrameHolder(SQLImplicits.scala:47)
at com.projs.poc.spark.ml.ProcessCSV$delayedInit$body.apply(ProcessCSV.scala:37)
答案 0 :(得分:4)
正如您可以在the official documentation中读到的那样,使用java.sql.Timestamp
来表示Spark SQL中的日期。如果您想使用Joda时间,您必须将输出转换为正确的类型
SparkSQL可以使用类型转换轻松处理标准日期格式:
sc.parallelize(Seq(Tuple1("2016-01-11 00:01:02")))
.toDF("dt")
.select($"dt".cast("timestamp"))
答案 1 :(得分:1)
感谢zero323的解决方案。我使用了java.sql.Timestamp,这是我修改过的代码
val dateYMD: java.sql.Timestamp = new java.sql.Timestamp(DateTimeFormat.forPattern("yyyy-MM-dd HH:mm:ss").parseDateTime(p(8)).getMillis)
testData(dateYMD)}.toDF().show()
并将我的班级改为
case class testData(GamingDate: java.sql.Timestamp) { }
答案 2 :(得分:0)
Scala Spark模式不明确支持日期时间。 您可以探索其他选项。他们是:
1)将datetime转换为millis,您可以保持Long格式。
2)将datetime转换为unixtime(java格式)https://stackoverflow.com/a/44957376/9083843
3)将日期时间转换为字符串。您可以随时使用DateTime.parse(“ stringdatetime”)更改回joda datetime
4)如果您仍想在scala模式中保持joda datetime,则可以将数据帧转换为序列
dataframe.rdd.map(r =>DateTime.parse(r(0).toString()).collect().toSeq