Shiny,R - 多个动作+按钮来更新csv

时间:2016-01-14 14:29:04

标签: r csv shiny action-button

我正在尝试自动编辑csv。我希望Shiny应用程序的用户能够在他们的csv中选择他们想要清理的选项。为了澄清,我希望他们能够单击一个按钮,然后更新csv,然后单击另一个按钮并再次更新,同时保持原始更新。目前,我只关注两个按钮的情况,首先我点击“加载”按钮加载并查看csv;然后我想点击“电子邮件清理”按钮添加一列新的已清理电子邮件。最终,我想添加更多按钮。

我的代码目前因错误而崩溃:

.getReactiveEnvironment()$ currentContext()中的错误:   没有活动的反应上下文,不允许操作。 (你试图做一些只能在反应式表达式或观察者内部完成的事情。)

我的代码如下:

UI

    ui = fluidPage(
       sidebarPanel(
           fileInput('file1', 'Choose file to upload',accept = c('text/csv','text/comma-separated-values','text/tab-separated-values','text/plain','.csv','.tsv')),
           checkboxInput('header', 'Header', TRUE),
           radioButtons('sep', 'Separator',c(Comma=',',Semicolon=';',Tab='\t'),'Comma'),
           radioButtons('quote', 'Quote',c(None='','Double Quote'='"','Single Quote'="'"),'Double Quote'),
           actionButton("Load", "Load File"),
           actionButton("Email", "Clean Email")),
           mainPanel(tableOutput("my_output_data"))
       )

服务器

           server = function(input, output) {

             ###Load CSV File
             data1 <- reactive({
               if(input$Load == 0){return()}
               inFile <- input$file1
               if (is.null(inFile)){return(NULL)}

               isolate({ 
                 input$Load
                 my_data <- read.csv(inFile$datapath, header = input$header,sep = input$sep, quote = input$quote,stringsAsFactors =FALSE)
               })
               my_data
             })
               output$my_output_data <- renderTable({data1()},include.rownames=FALSE) 

             data2 <- reactive({
               if(input$Email == 0){return()}
               inFile <- input$file1
               if (is.null(inFile)){return(NULL)}

               isolate({ 
                 input$Email
                 my_data <- read.csv(inFile$datapath, header = input$header,sep = input$sep, quote = input$quote,stringsAsFactors =FALSE)

                 ###CLEAN EMAIL BUTTON FORMULA
                 email_clean <- function(email, invalid = NA)
                 {
                   email <- trimws(email) 
                   email[(nchar(email) %in% c(1,2)) ] <- invalid
                   email[!grepl("@", email)] <- invalid
                   bad_email <- c("\\@no.com", "\\@na.com","\\@none.com","\\@email.com",
                   "\\@noemail.com", "\\@directcapital.com", "\\@test.com", 
                   "noemail")
                   pattern = paste0("(?i)\\b",paste0(bad_email,collapse="\\b|\\b"),"\\b")
                   email <-gsub(pattern, invalid, sapply(email,as.character))
                   unname(email)
                 }
                 Cleaned_Email <- email_clean(my_data$Email)
                 my_data<-cbind(my_data,Cleaned_Email)
               })
               my_data},

               {
               if(input$Load == 0){return()}
               inFile <- input$file1
               if (is.null(inFile)){return(NULL)}

               isolate({ 
                 input$Load
                 my_data <- read.csv(inFile$datapath, header = input$header,sep = input$sep, quote = input$quote,stringsAsFactors =FALSE)
               })
               my_data}
             )
             output$my_output_data <- renderTable({data2()},include.rownames=FALSE)  

           }



     shinyApp(ui = ui, server = server)

谢谢!

0 个答案:

没有答案