我试过四处寻找并且无法找到一种简单的方法来做到这一点,所以我希望你的专业知识可以提供帮助。
我有一个带有两列的pandas数据框
import numpy as np
import pandas as pd
pd.options.display.width = 1000
testing = pd.DataFrame({'NAME':[
'FIRST', np.nan, 'NAME2', 'NAME3',
'NAME4', 'NAME5', 'NAME6'], 'FULL_NAME':['FIRST LAST', np.nan, 'FIRST LAST', 'FIRST NAME3', 'FIRST NAME4 LAST', 'ANOTHER NAME', 'LAST NAME']})
给了我
FULL_NAME NAME
0 FIRST LAST FIRST
1 NaN NaN
2 FIRST LAST NAME2
3 FIRST NAME3 NAME3
4 FIRST NAME4 LAST NAME4
5 ANOTHER NAME NAME5
6 LAST NAME NAME6
我想要做的是从'NAME'列中获取值,然后从'FULL NAME'列中删除它,如果它在那里。那么函数将返回
FULL_NAME NAME NEW
0 FIRST LAST FIRST LAST
1 NaN NaN NaN
2 FIRST LAST NAME2 FIRST LAST
3 FIRST NAME3 NAME3 FIRST
4 FIRST NAME4 LAST NAME4 FIRST LAST
5 ANOTHER NAME NAME5 ANOTHER NAME
6 LAST NAME NAME6 LAST NAME
到目前为止,我已经在下面定义了一个函数并使用了apply方法。虽然我的大型数据集运行速度相当慢,但我希望有一种更有效的方法。谢谢!
def address_remove(x):
try:
newADDR1 = re.sub(x['NAME'], '', x[-1])
newADDR1 = newADDR1.rstrip()
newADDR1 = newADDR1.lstrip()
return newADDR1
except:
return x[-1]
答案 0 :(得分:5)
这是一个比你当前的解决方案快一点的解决方案,我不相信会有更快的东西
In [13]: import numpy as np
import pandas as pd
n = 1000
testing = pd.DataFrame({'NAME':[
'FIRST', np.nan, 'NAME2', 'NAME3',
'NAME4', 'NAME5', 'NAME6']*n, 'FULL_NAME':['FIRST LAST', np.nan, 'FIRST LAST', 'FIRST NAME3', 'FIRST NAME4 LAST', 'ANOTHER NAME', 'LAST NAME']*n})
这是一种很长的衬里,但它应该做你需要的
我能提出的禁食解决方案是使用另一个答案中提到的replace
:
In [37]: %timeit testing ['NEW2'] = [e.replace(k, '') for e, k in zip(testing.FULL_NAME.astype('str'), testing.NAME.astype('str'))]
100 loops, best of 3: 4.67 ms per loop
原始答案:
In [14]: %timeit testing ['NEW'] = [''.join(str(e).split(k)) for e, k in zip(testing.FULL_NAME.astype('str'), testing.NAME.astype('str'))]
100 loops, best of 3: 7.24 ms per loop
与您当前的解决方案相比:
In [16]: %timeit testing['NEW1'] = testing.apply(address_remove, axis=1)
10 loops, best of 3: 166 ms per loop
这些可以为您提供与当前解决方案相同的答案
答案 1 :(得分:4)
您可以使用replace
方法和regex
参数执行此操作,然后使用str.strip
:
In [605]: testing.FULL_NAME.replace(testing.NAME[testing.NAME.notnull()], '', regex = True).str.strip()
Out[605]:
0 LAST
1 NaN
2 FIRST LAST
3 FIRST
4 FIRST LAST
5 ANOTHER NAME
6 LAST NAME
Name: FULL_NAME, dtype: object
注意您需要将notnull
传递给testing.NAME
,因为没有它NaN
值也会被替换为空字符串
基准测试比最快的@johnchase解决方案慢,但我认为它更具可读性并且使用DataFrames和Series的所有pandas方法:
In [607]: %timeit testing['NEW'] = testing.FULL_NAME.replace(testing.NAME[testing.NAME.notnull()], '', regex = True).str.strip()
100 loops, best of 3: 4.56 ms per loop
In [661]: %timeit testing ['NEW'] = [e.replace(k, '') for e, k in zip(testing.FULL_NAME.astype('str'), testing.NAME.astype('str'))]
1000 loops, best of 3: 450 µs per loop
答案 2 :(得分:0)
我认为你想使用字符串所具有的replace()方法,它比使用正则表达式快几个数量级(我只是在IPython中快速检查过):
%timeit mystr.replace("ello", "")
The slowest run took 7.64 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 250 ns per loop
%timeit re.sub("ello","", "e")
The slowest run took 21.03 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 4.7 µs per loop
如果你之后需要进一步改进速度,你应该研究numpy的vectorize函数(但我认为使用replace代替正则表达式的速度应该非常快)。