我正在尝试一些相当简单的方法,即在具有固定长度的信号频谱中获得正确的值。我不知道包含的频率,因此我不能相应地选择fft节点的数量。这让我有泄漏的问题。我试图通过使用一个窗口淡出我的时间信号的开始和结束来避免这种情况。有了这个我有问题,以获得正确的振幅。这是我到目前为止所做的:
只要fft节点的数量等于我的时间信号中的数量,它就能很好地工作。但是当fft节点的数量小于时间信号节点时,频谱的幅度就会出错。
我建立了一个计算三个光谱的小例子:
通过改变SampleTime可以改变时间信号的长度,通过改变N可以改变FFT节点的数量。通过以下设置,所有幅度都是正确的,但是对于具有Hanning窗口的光谱。为什么这么多?感谢您提前提供任何帮助。
SampleTime=0.001;
Fs=1/SampleTime;
t=0:SampleTime:10;
y=2*sin(2*pi*10*t)+3*cos(2*pi*30*t); % Time Signal
fn = Fs/2; % Nyquistfrequency
N = 1001; % FFT-length (use N=2^x to use DFT-Algorithm)
df = Fs/N; % frequency resolution
%% Generating spectrum using fft()
win = hann(length(y))'; % generate Hanning window for Time Signal
ywin = y.*win*length(win)/sum(win); % amplitude correction to get correct values with window
Hwin = fft(ywin, N); % spectrum of windowed signal
H = fft(y,N); % complex spectrum of signal without window
amplHwin = abs(Hwin); % absolute values of spectrum of windowed signal
amplH = abs(H); % absolute values of spectrum without window
% Double sided spectrum -> single sided spectrum of windowed signal
amplitudengang = fftshift(amplH/N);
amplitudengang = amplitudengang(ceil(length(amplitudengang)/2+1):end);
amplitudengang(2:end) = amplitudengang(2:end)*2;
% Double sided spectrum -> single sided spectrum of unwindowed signal
amplitudengangwin = fftshift(amplHwin/N);
amplitudengangwin = amplitudengangwin(ceil(length(amplitudengangwin)/2+1):end);
amplitudengangwin(2:end) = amplitudengangwin(2:end)*2;
%% Generating spectrum using spectrogram()
noverlap = floor(0.5*N);
window = hann(N);
[B,F,T] = spectrogram(y,window,noverlap,N,Fs);
% Scaling
FFTScalingFactor = 2 * 1 / N; % 2 for Hanning window, 2^(-1/2) for RMS, 1 for peak
A = FFTScalingFactor * B;
B = FFTScalingFactor * abs(B);
B(2:end-1,:) = 2.*B(2:end-1,:); % single side spectrum with even block length
%% Plots
x_fn = 0 : df : fn-df; % Frequency vector
figure
subplot(2,2,1)
plot(x_fn,amplitudengangwin,'r')
hold on
plot(x_fn,amplitudengang)
legend('Hanning window','no window')
title('FFT()')
subplot(2,2,3)
plot(t,y)
title('Time signal')
subplot(2,2,2)
plot(F,B(:,1))
title('Spectrogram()')
答案 0 :(得分:3)
您应该更改FFT的数量。
Hwin = fft(ywin, N); % spectrum of windowed signal
H = fft(y,N); % complex spectrum of signal without window
这里N是1001。
这意味着当您执行窗口信号的FFT时,您在所有数据样本(10001个样本)中仅使用了前1001个样本。
您使用的窗口信号如下所示。
更改您的代码,如下所示
Hwin = fft(ywin, length(y)); % spectrum of windowed signal
H = fft(y,length(y)); % complex spectrum of signal without window
amplHwin = abs(Hwin); % absolute values of spectrum of windowed signal
amplH = abs(H); % absolute values of spectrum without window
% Double sided spectrum -> single sided spectrum of windowed signal
amplitudengang = fftshift(amplH/length(y));
amplitudengang = amplitudengang(ceil(length(amplitudengang)/2+1):end);
amplitudengang(2:end) = amplitudengang(2:end)*2;
% Double sided spectrum -> single sided spectrum of unwindowed signal
amplitudengangwin = fftshift(amplHwin/length(y));
amplitudengangwin = amplitudengangwin(ceil(length(amplitudengangwin)/2+1):end);
amplitudengangwin(2:end) = amplitudengangwin(2:end)*2;
fftAll=[amplitudengang' amplitudengangwin'];
figure(1)
plot(fftAll)
xlim([0 500])
你会得到以下频谱。
您定义了N = 1001,但您的数据长度为10001.如果您只想使用1001个样本,则应将窗口长度设置为1001。
如果您只想在数据中使用1001个样本,请更改您的代码,如下所示。
SampleTime=0.001;
Fs=1/SampleTime;
t=0:SampleTime:10;
y=2*sin(2*pi*10*t)+3*cos(2*pi*30*t); % Time Signal
fn = Fs/2; % Nyquistfrequency
N = 1001; % FFT-length (use N=2^x to use DFT-Algorithm)
df = Fs/N; % frequency resolution
%% Generating spectrum using fft()
win = hann(N)'; % generate Hanning window for Time Signal
figure(10)
plot(win)
ywin = y(1:N).*win*length(win)/sum(win); % amplitude correction to get correct values with window
figure(11)
plot(ywin)
xlim([0 1001])
Hwin = fft(ywin, N); % spectrum of windowed signal
H = fft(y,N); % complex spectrum of signal without window
amplHwin = abs(Hwin); % absolute values of spectrum of windowed signal
amplH = abs(H); % absolute values of spectrum without window
% Double sided spectrum -> single sided spectrum of windowed signal
amplitudengang = fftshift(amplH/N);
amplitudengang = amplitudengang(ceil(length(amplitudengang)/2+1):end);
amplitudengang(2:end) = amplitudengang(2:end)*2;
% Double sided spectrum -> single sided spectrum of unwindowed signal
amplitudengangwin = fftshift(amplHwin/N);
amplitudengangwin = amplitudengangwin(ceil(length(amplitudengangwin)/2+1):end);
amplitudengangwin(2:end) = amplitudengangwin(2:end)*2;
fftAll=[amplitudengang' amplitudengangwin'];
figure(1)
plot(fftAll)
xlim([0 50])
在这段代码中,我将所有长度(y)都改为N. 我改变了ywin,如下所示。
ywin = y(1:N).*win*length(win)/sum(win);
结果如下所示。