虽然很简单,但我不知道在data.table
解决方案中选择数据表中组的前n行。你能帮帮我吗?
答案 0 :(得分:47)
作为替代方案:
function longPoll() {
var shouldDelay = false;
$.ajax({
url: 'poll.php',
async: true, // by default, it's async, but...
dataType: 'json', // or the dataType you are working with
timeout: 10000, // IMPORTANT! this is a 10 seconds timeout
cache: false
}).done(function (data, textStatus, jqXHR) {
// do something with data...
}).fail(function (jqXHR, textStatus, errorThrown ) {
shouldDelay = textStatus !== "timeout";
}).always(function() {
// in case of network error. throttle otherwise we DOS ourselves. If it was a timeout, its normal operation. go again.
var delay = shouldDelay ? 10000: 0;
window.setTimeout(longPoll, delay);
});
}
longPoll(); //fire first handler
当您查看示例数据集的速度时,dt[, .SD[1:3], cyl]
方法与.I
method of @eddi相同。与head
包比较:
microbenchmark
结果:
microbenchmark(head = dt[, head(.SD, 3), cyl],
SD = dt[, .SD[1:3], cyl],
I = dt[dt[, .I[1:3], cyl]$V1],
times = 10, unit = "relative")
但是,Unit: relative
expr min lq mean median uq max neval cld
head 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 10 a
SD 2.156562 2.319538 2.306065 2.365190 2.318540 2.1908401 10 b
I 1.001810 1.029511 1.007371 1.018514 1.016583 0.9442973 10 a
专为大型数据集而设计。所以,再次运行这个比较:
data.table
结果:
# creating a 30 million dataset
largeDT <- dt[,.SD[sample(.N, 1e7, replace = TRUE)], cyl]
# running the benchmark on the large dataset
microbenchmark(head = largeDT[, head(.SD, 3), cyl],
SD = largeDT[, .SD[1:3], cyl],
I = largeDT[largeDT[, .I[1:3], cyl]$V1],
times = 10, unit = "relative")
现在Unit: relative
expr min lq mean median uq max neval cld
head 2.279753 2.194702 2.221330 2.177774 2.276986 2.33876 10 b
SD 2.060959 2.187486 2.312009 2.236548 2.568240 2.55462 10 b
I 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 10 a
方法显然是最快的方法。
更新2016-02-12:
使用 data.table 包的最新开发版本,.I
方法仍然获胜。 .I
方法或.SD
方法是否更快似乎取决于数据集的大小。现在基准测试给出了:
head()
然而,如果数据集稍微小一些(但仍然很大),则可能性发生变化:
Unit: relative
expr min lq mean median uq max neval cld
head 2.093240 3.166974 3.473216 3.771612 4.136458 3.052213 10 b
SD 1.840916 1.939864 2.658159 2.786055 3.112038 3.411113 10 b
I 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10 a
基准现在略微支持largeDT2 <- dt[,.SD[sample(.N, 1e6, replace = TRUE)], cyl]
方法上的head
方法:
.SD
答案 1 :(得分:10)
我们可以将head
与.SD
library(data.table)
dt <- data.table(mtcars)
> dt[, head(.SD, 3), by = "cyl"]
cyl mpg disp hp drat wt qsec vs am gear carb
1: 6 21.0 160.0 110 3.90 2.620 16.46 0 1 4 4
2: 6 21.0 160.0 110 3.90 2.875 17.02 0 1 4 4
3: 6 21.4 258.0 110 3.08 3.215 19.44 1 0 3 1
4: 4 22.8 108.0 93 3.85 2.320 18.61 1 1 4 1
5: 4 24.4 146.7 62 3.69 3.190 20.00 1 0 4 2
6: 4 22.8 140.8 95 3.92 3.150 22.90 1 0 4 2
7: 8 18.7 360.0 175 3.15 3.440 17.02 0 0 3 2
8: 8 14.3 360.0 245 3.21 3.570 15.84 0 0 3 4
9: 8 16.4 275.8 180 3.07 4.070 17.40 0 0 3 3