当我正在运行multinom()
时,请说Y ~ X1 + X2 + X3
,如果某一特定行X1
为NA
(即缺失),则为Y
,{{ 1}}和X2
都有一个值,这整行会被抛出(就像在SAS中一样)吗?如何在X3
中处理缺失值?
答案 0 :(得分:1)
以下是一个简单示例(来自?multinom
包的nnet
),以探索不同的na.action
:
> library(nnet)
> library(MASS)
> example(birthwt)
> (bwt.mu <- multinom(low ~ ., bwt))
有意创建NA
值:
> bwt[1,"age"]<-NA # Intentionally create NA value
> nrow(bwt)
[1] 189
测试4种不同的na.action
:
> predict(multinom(low ~ ., bwt, na.action=na.exclude)) # Note length is 189
# weights: 12 (11 variable)
initial value 130.311670
iter 10 value 97.622035
final value 97.359978
converged
[1] <NA> 0 0 0 0 0 0 0 0 0 0 0 1 1 0
[16] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
....
> predict(multinom(low ~ ., bwt, na.action=na.omit)) # Note length is 188
# weights: 12 (11 variable)
initial value 130.311670
iter 10 value 97.622035
final value 97.359978
converged
[1] 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
[38] 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
.....
> predict(multinom(low ~ ., bwt, na.action=na.fail)) # Generates error
Error in na.fail.default(list(low = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, :
missing values in object
> predict(multinom(low ~ ., bwt, na.action=na.pass)) # Generates error
Error in qr.default(X) : NA/NaN/Inf in foreign function call (arg 1)
因此na.exclude
会在预测中生成NA
,而na.omit
会完全忽略它。 na.pass
和na.fail
不会创建模型。
如果未指定na.action
,则会显示默认值:
> getOption("na.action")
[1] "na.omit"
答案 1 :(得分:0)
您可以指定行为
- na.omit and na.exclude: returns the object with observations removed if they contain any missing values; differences between omitting and excluding NAs can be seen in some prediction and residual functions
- na.pass: returns the object unchanged
- na.fail: returns the object only if it contains no missing values