我dataset
的{{1}}由3个向量accelerometer
组成
问题是Encog库上的示例用于(x, y, z)
问题并使用2维,而XOR
只接受一个维度 - double []。
任何人都可以帮助我解释MLData
或
指向我可以利用3D数据集的任何其他库吗?
EDITED
好的我做了什么才能让它发挥作用
3D dataset
无论如何,我现在会尝试校准网络,因为结果很糟糕 - 就像对抗率低于50%,DTW算法约为80%-90%。
Basicaly我做了
public float compareTwoSequences(HashMap<Integer,List<Float>> base,
HashMap<Integer,List<Float>> compare){
Log.i("NN alg", "comparing two Sequences");
List<Float> baseX = base.get(SensorData.X_axis);
List<Float> baseY = base.get(SensorData.Y_axis);
List<Float> baseZ = base.get(SensorData.Z_axis);
List<Float> compareX = compare.get(SensorData.X_axis);
List<Float> compareY = compare.get(SensorData.Y_axis);
List<Float> compareZ = compare.get(SensorData.Z_axis);
int baseSize = baseX.size();
int compSize = compareX.size();
int minSize = Math.min(baseSize, compSize);
double[][] dataSet = new double[6][minSize];
double[][] testSet = new double[3][minSize];
double[][] ideal = new double[][]{
{2.0},
{2.0},
{2.0},
{0.0},
{0.0},
{0.0}
};
double[][] idealTest = new double[][]{
{1.0},
{1.0},
{1.0}
};
Iterator<Float> xIter = baseX.iterator();
Iterator<Float> yIter = baseY.iterator();
Iterator<Float> zIter = baseZ.iterator();
Iterator<Float> xIter1 = compareX.iterator();
Iterator<Float> yIter1 = compareY.iterator();
Iterator<Float> zIter1 = compareZ.iterator();
for(int i = 0; i < minSize; i++){
testSet[0][i] = dataSet[0][i] = xIter.next();
testSet[1][i] = dataSet[1][i] = yIter.next();
testSet[2][i] = dataSet[2][i] = zIter.next();
dataSet[3][i] = xIter1.next();
dataSet[4][i] = yIter1.next();
dataSet[5][i] = zIter1.next();
}
NeuralDataSet trainingSet = new BasicNeuralDataSet(dataSet,ideal);
network = new BasicNetwork();
network.addLayer(new BasicLayer(null, false, baseSize));
network.addLayer(new BasicLayer(new ActivationTANH(), true, 7));
network.addLayer(new BasicLayer(new ActivationTANH(), true, 7));
network.addLayer(new BasicLayer(new ActivationLinear(), false, 1));
network.getStructure().finalizeStructure();
network.reset();
final Propagation train = new ResilientPropagation(network, trainingSet);
int epochsCount = 100;
for(int epoch = 1; epoch > epochsCount; epoch++ ){
train.iteration();
}
Log.i("alg NN","Training error: "+train.getError()*100.0);
train.finishTraining();
int i=0;
double error = 0.0;
while(i<6){
MLData input = new BasicMLData(dataSet[i]);
MLData output = network.compute(input);
if(i<3){
error += Math.abs(output.getData(0));
}
Log.i("alg NN","Classification for i:"+i+" "+output.getData(0)+ " ideal "+ideal[i][0]);
i++;
}
error = error/3.0*100.0;
Log.i("alg NN","Final error is: "+error);
return (float)(error);
}
答案 0 :(得分:1)
这样的事情怎么样(这是C#,但Java应该类似)
double[][] Input =
{
new[] {0.0, 0.0, 0.0},
new[] {1.0, 0.0, 1.0},
new[] {0.0, 1.0, 2.0},
new[] {1.0, 1.0, 3.0}
};
double[][] Ideal =
{
new[] {0.0},
new[] {1.0},
new[] {1.0},
new[] {0.0}
};
Encog.ML.Data.Basic.BasicMLDataSet TrainingSet = new Encog.ML.Data.Basic.BasicMLDataSet(Input, Ideal);
请注意,每个输入都包含三个值。这是根据XOR问题改编的,但我为每个问题添加了一个额外的值,以便每行模拟一个加速度计输入。