将装饰器附加到类中的所有函数

时间:2010-08-12 12:16:42

标签: python class oop decorator class-method

我真的不需要这样做,但只是想知道,有没有办法将装饰器绑定到一个类中的所有函数,而不是明确地为每个函数声明它。

我认为它然后变成了一种方面,而不是装饰者,它确实感觉有点奇怪,但是想到时间或认证这样的东西它会非常整洁。

9 个答案:

答案 0 :(得分:27)

执行此操作或对类定义进行其他修改的最简洁方法是定义元类。

或者,只需在类定义的末尾应用装饰器:

class Something:
   def foo(self): pass

for name, fn in inspect.getmembers(Something):
    if isinstance(fn, types.UnboundMethodType):
        setattr(Something, name, decorator(fn))

对于Python 3,将types.UnboundMethodType替换为types.FunctionType。

在实践中,你当然希望更有选择性地应用你的装饰器,只要你想要装饰除了一种方法之外的所有方法,你会发现只使用传统的装饰器语法就更容易,更灵活。方式。

答案 1 :(得分:27)

每次想到更改类定义时,都可以使用类装饰器或元类。例如使用元类

import types

class DecoMeta(type):
   def __new__(cls, name, bases, attrs):

      for attr_name, attr_value in attrs.iteritems():
         if isinstance(attr_value, types.FunctionType):
            attrs[attr_name] = cls.deco(attr_value)

      return super(DecoMeta, cls).__new__(cls, name, bases, attrs)

   @classmethod
   def deco(cls, func):
      def wrapper(*args, **kwargs):
         print "before",func.func_name
         result = func(*args, **kwargs)
         print "after",func.func_name
         return result
      return wrapper

class MyKlass(object):
   __metaclass__ = DecoMeta

   def func1(self): 
      pass

MyKlass().func1()

输出:

before func1
after func1

注意:它不会修饰staticmethod和classmethod

答案 2 :(得分:2)

以下代码适用于python2.x和3.x

import inspect

def decorator_for_func(orig_func):
    def decorator(*args, **kwargs):
         print("Decorating wrapper called for method %s" % orig_func.__name__)
         result = orig_func(*args, **kwargs)
         return result
    return decorator

def decorator_for_class(cls):
    for name, method in inspect.getmembers(cls):
        if (not inspect.ismethod(method) and not inspect.isfunction(method)) or inspect.isbuiltin(method):
            continue
        print("Decorating function %s" % name)
        setattr(cls, name, decorator_for_func(method))
    return cls

@decorator_for_class
class decorated_class:
     def method1(self, arg, **kwargs):
         print("Method 1 called with arg %s" % arg)
     def method2(self, arg):
         print("Method 2 called with arg %s" % arg)


d=decorated_class()
d.method1(1, a=10)
d.method2(2)

答案 3 :(得分:1)

当然,当你想要修改python创建对象的方式时,元类是最pythonic的方式。可以通过覆盖类的__new__方法来完成。但是我想提一下这个问题(特别是对于python 3.X)有一些要点:

  1. types.FunctionType并不保护特殊方法不被修饰,因为它们是函数类型。作为一种更通用的方法,您可以使用双下划线(__)来装饰其名称未启动的对象。此方法的另一个好处是它还涵盖了名称空间中存在的那些对象,它们以__开头但不像__qualname____module__等函数。
  2. namespace标头中的__new__参数不包含__init__中的类属性。原因是__new____init__(初始化)之前执行。

  3. 没有必要使用classmethod作为装饰器,因为在大多数情况下您从另一个模块导入装饰器。

  4. 如果您的类包含一个全局项(__init__的一侧),因为拒绝装饰并检查名称是否未以__开头,您可以使用{{1}检查类型确保你没有装饰非功能对象。
  5. 以下是您可以使用的样本metacalss:

    types.FunctionType

    演示:

    class TheMeta(type):
        def __new__(cls, name, bases, namespace, **kwds):
            # if your decorator is a class method of the metaclass  use
            # `my_decorator = cls.my_decorator` in order to invoke the decorator.
            namespace = {k: v if k.startswith('__') else my_decorator(v) for k, v in namespace.items()}
            return type.__new__(cls, name, bases, namespace)
    

    输出:

    def my_decorator(func):
            def wrapper(self, arg):
                # You can also use *args instead of (self, arg) and pass the *args
                # to the function in following call.
                return "the value {} gets modified!!".format(func(self, arg))
            return wrapper
    
    
    class TheMeta(type):
        def __new__(cls, name, bases, namespace, **kwds):
            # my_decorator = cls.my_decorator (if the decorator is a classmethod)
            namespace = {k: v if k.startswith('__') else my_decorator(v) for k, v in namespace.items()}
            return type.__new__(cls, name, bases, namespace)
    
    
    class MyClass(metaclass=TheMeta):
        # a = 10
        def __init__(self, *args, **kwargs):
            self.item = args[0]
            self.value = kwargs['value']
    
        def __getattr__(self, attr):
            return "This class hasn't provide the attribute {}.".format(attr)
    
        def myfunction_1(self, arg):
            return arg ** 2
    
        def myfunction_2(self, arg):
            return arg ** 3
    
    myinstance = MyClass(1, 2, value=100)
    print(myinstance.myfunction_1(5))
    print(myinstance.myfunction_2(2))
    print(myinstance.item)
    print(myinstance.p)
    

    要检查上述备注中的第3项,您可以取消注释行the value 25 gets modified!! the value 8 gets modified!! 1 This class hasn't provide the attribute p. # special method is not decorated. 并执行a = 10并查看结果然后更改print(myinstance.a)中的字典理解,如下所示,然后查看结果再次:

    __new__

答案 4 :(得分:0)

Python 3更新:

class DecoMeta(type):
   def __new__(cls, name, bases, attrs):

      for attr_name, attr_value in attrs.items():
         if isinstance(attr_value, types.FunctionType) :
            attrs[attr_name] = cls.deco(attr_value)

      return super(DecoMeta, cls).__new__(cls, name, bases, attrs)

   @classmethod
   def deco(cls, func):
      def wrapper(*args, **kwargs):
         print ("before",func.__name__)
         result = func(*args, **kwargs)
         print ("after",func.__name__)
         return result
      return wrapper

(感谢邓肯的帮助)

答案 5 :(得分:0)

对于类似的issue

,我将在这里重复我的回答

通过更改元

import functools


class Logger(type):
    @staticmethod
    def _decorator(fun):
        @functools.wraps(fun)
        def wrapper(*args, **kwargs):
            print(fun.__name__, args, kwargs)
            return fun(*args, **kwargs)
        return wrapper

    def __new__(mcs, name, bases, attrs):
        for key in attrs.keys():
            if callable(attrs[key]):
                # if attrs[key] is callable, then we can easily wrap it with decorator
                # and substitute in the future attrs
                # only for extra clarity (though it is wider type than function)
                fun = attrs[key]
                attrs[key] = Logger._decorator(fun)
        # and then invoke __new__ in type metaclass
        return super().__new__(mcs, name, bases, attrs)


class A(metaclass=Logger):
    def __init__(self):
        self.some_val = "some_val"

    def method_first(self, a, b):
        print(a, self.some_val)

    def another_method(self, c):
        print(c)

    @staticmethod
    def static_method(d):
        print(d)


b = A()
# __init__ (<__main__.A object at 0x7f852a52a2b0>,) {}

b.method_first(5, b="Here should be 5")
# method_first (<__main__.A object at 0x7f852a52a2b0>, 5) {'b': 'Here should be 5'}
# 5 some_val
b.method_first(6, b="Here should be 6")
# method_first (<__main__.A object at 0x7f852a52a2b0>, 6) {'b': 'Here should be 6'}
# 6 some_val
b.another_method(7)
# another_method (<__main__.A object at 0x7f852a52a2b0>, 7) {}
# 7
b.static_method(7)
# 7

还将展示两种方法,如何在不更改类的元信息的情况下(通过类装饰器和类继承)实现该方法。通过类装饰器put_decorator_on_all_methods的第一种方法接受装饰器来包装类的所有成员可调用对象。

def logger(f):
    @functools.wraps(f)
    def wrapper(*args, **kwargs):
        print(f.__name__, args, kwargs)
        return f(*args, **kwargs)

    return wrapper


def put_decorator_on_all_methods(decorator, cls=None):
    if cls is None:
        return lambda cls: put_decorator_on_all_methods(decorator, cls)

    class Decoratable(cls):
        def __init__(self, *args, **kargs):
            super().__init__(*args, **kargs)

        def __getattribute__(self, item):
            value = object.__getattribute__(self, item)
            if callable(value):
                return decorator(value)
            return value

    return Decoratable


@put_decorator_on_all_methods(logger)
class A:
    def method(self, a, b):
        print(a)

    def another_method(self, c):
        print(c)

    @staticmethod
    def static_method(d):
        print(d)


b = A()
b.method(5, b="Here should be 5")
# >>> method (5,) {'b': 'Here should be 5'}
# >>> 5
b.method(6, b="Here should be 6")
# >>> method (6,) {'b': 'Here should be 6'}
# >>> 6
b.another_method(7)
# >>> another_method (7,) {}
# >>> 7
b.static_method(8)
# >>> static_method (8,) {}
# >>> 8

最近,我遇到了相同的问题,但是我不能将装饰器放在类上或以任何其他方式更改它,除非允许我仅通过继承添加此类行为(我不确定如果您可以根据需要更改代码库,则这是最好的选择。

这里的类Logger强制所有子类的可调用成员编写有关其调用的信息,请参见下面的代码。

class Logger:

    def _decorator(self, f):
        @functools.wraps(f)
        def wrapper(*args, **kwargs):
            print(f.__name__, args, kwargs)
            return f(*args, **kwargs)

        return wrapper

    def __getattribute__(self, item):
        value = object.__getattribute__(self, item)
        if callable(value):
            decorator = object.__getattribute__(self, '_decorator')
            return decorator(value)
        return value


class A(Logger):
    def method(self, a, b):
        print(a)

    def another_method(self, c):
        print(c)

    @staticmethod
    def static_method(d):
        print(d)

b = A()
b.method(5, b="Here should be 5")
# >>> method (5,) {'b': 'Here should be 5'}
# >>> 5
b.method(6, b="Here should be 6")
# >>> method (6,) {'b': 'Here should be 6'}
# >>> 6
b.another_method(7)
# >>> another_method (7,) {}
# >>> 7
b.static_method(7)
# >>> static_method (7,) {}
# >>> 7

或更抽象地说,您可以基于某些装饰器实例化基类。

def decorator(f):
    @functools.wraps(f)
    def wrapper(*args, **kwargs):
        print(f.__name__, args, kwargs)
        return f(*args, **kwargs)
    return wrapper


class Decoratable:
    def __init__(self, dec):
        self._decorator = dec

    def __getattribute__(self, item):
        value = object.__getattribute__(self, item)
        if callable(value):
            decorator = object.__getattribute__(self, '_decorator')
            return decorator(value)
        return value


class A(Decoratable):
    def __init__(self, dec):
        super().__init__(dec)

    def method(self, a, b):
        print(a)

    def another_method(self, c):
        print(c)

    @staticmethod
    def static_method(d):
        print(d)

b = A(decorator)
b.method(5, b="Here should be 5")
# >>> method (5,) {'b': 'Here should be 5'}
# >>> 5
b.method(6, b="Here should be 6")
# >>> method (6,) {'b': 'Here should be 6'}
# >>> 6
b.another_method(7)
# >>> another_method (7,) {}
# >>> 7
b.static_method(7)
# >>> static_method (7,) {}
# >>> 7

答案 6 :(得分:0)

在某些情况下,您可能还想做另一件事。有时,您可能想触发诸如调试之类的附件,而不是针对所有类,而是针对对象的每种方法来触发附件,您可能想要记录其运行情况。

def start_debugging():
        import functools
        import datetime
        filename = "debug-{date:%Y-%m-%d_%H_%M_%S}.txt".format(date=datetime.datetime.now())
        debug_file = open(filename, "a")
        debug_file.write("\nDebug.\n")

        def debug(func):
            @functools.wraps(func)
            def wrapper_debug(*args, **kwargs):
                args_repr = [repr(a) for a in args]  # 1
                kwargs_repr = [f"{k}={v!r}" for k, v in kwargs.items()]  # 2
                signature = ", ".join(args_repr + kwargs_repr)  # 3
                debug_file.write(f"Calling {func.__name__}({signature})\n")
                value = func(*args, **kwargs)
                debug_file.write(f"{func.__name__!r} returned {value!r}\n")  # 4
                debug_file.flush()
                return value
            return wrapper_debug

        for obj in (self):
            for attr in dir(obj):
                if attr.startswith('_'):
                    continue
                fn = getattr(obj, attr)
                if not isinstance(fn, types.FunctionType) and \
                        not isinstance(fn, types.MethodType):
                    continue
                setattr(obj, attr, debug(fn))

此函数将遍历某些对象(仅当前为self),并用调试装饰器替换所有不以_开头的函数和方法。

上面没有提到用于迭代dir(self)的方法,但是完全可以使用。可以从对象外部调用,也可以任意调用。

答案 7 :(得分:0)

在Python 3中,您还可以编写一个简单的函数,将装饰器覆盖/应用到某些方法,例如:

from functools import wraps
from types import MethodType

def logged(func):
   @wraps(func)
   def wrapper(*args, **kwargs):
      res = func(*args, **kwargs)
      print("logging:", func.__name__, res)
      return res
   return wrapper

class Test:
   def foo(self):
      return 42
   ...

def aspectize(cls, decorator):
   for name, func in cls.__dict__.items():
      if not name.startswith("__"):
         setattr(cls, name, MethodType(decorator(func), cls))  # MethodType is key

aspectize(Test, logged)
t = Test()
t.foo()  # printing "logging: foo 42"; returning 42

答案 8 :(得分:-1)

您可以覆盖__getattr__方法。它实际上并没有附加装饰器,但它允许您返回一个装饰方法。你可能想做这样的事情:

class Eggs(object):
    def __getattr__(self, attr):
        return decorate(getattr(self, `_` + attr))

有一些丑陋的递归隐藏在那里,你想要防范,但这是一个开始。