我正在开发一个小的Python脚本,以便从forecast.io获取天气数据。一旦我获得了JSON文档,我就调用一个Class来创建一个新的记录保存在数据库中。问题是,某些字段(也是我的类中的属性)并不总是在API中通知,所以我必须包含某种防御性代码,否则当找不到字段时脚本会中断。
我发现@Alex Martelli的答案非常好:Reading from Python dict if key might not be present
如果你想做一些与使用默认值不同的事情(比方说, 当钥匙不存在时完全跳过打印),那么你需要一个 更多结构,即:
for r in results: if 'key_name' in r: print r['key_name']
或
for r in results: try: print r['key_name'] except KeyError: pass
但我想知道是否必须包含" if"或者"尝试"在我想保存的每个领域还是有更好的方法来做到这一点? (我想要保存27个字段和27"如果"看起来很难看)
这是我到目前为止的代码:
from datetime import datetime
import tornado.web
import tornado.httpclient
from tornado import gen
from src.db.city import list_cities
from src.db.weather import Weather
from motorengine import *
@gen.coroutine
def forecastio_api():
http_client = tornado.httpclient.AsyncHTTPClient()
base_url = "https://api.forecast.io/forecast/APIKEY"
city yield list_cities()
for city in city:
url = base_url + "/%s,%s" %(str(city.loc[0]), str(city.loc[1]))
response = yield http_client.fetch(url)
json = tornado.escape.json_decode(response.body)
for day in json['daily']['data']:
weather = Weather(city=city,
time = datetime.fromtimestamp(day['time']),
summary = day.get('summary'),
icon = day.get('icon'),
sunrise_time = datetime.fromtimestamp(day.get('sunriseTime')),
sunset_time = datetime.fromtimestamp(day.get('sunsetTime')),
moon_phase = day.get('moonPhase'),
precip_intensity = day.get('precipIntensity'),
precip_intensity_max = day.get('precipIntensityMax'),
precip_intensity_max_time = datetime.fromtimestamp(day.get('precipIntensityMaxTime')),
precip_probability = day.get('precipProbability'),
precip_type = day.get('precipType'),
temperature_min = day.get('temperatureMin'),
temperature_min_time = datetime.fromtimestamp(day.get('temperatureMinTime')),
temperature_max = day.get('temperatureMax'),
temperature_max_time = datetime.fromtimestamp(day.get('temperatureMaxTime')),
apparent_temperature_min = day.get('apparentTemperatureMin'),
apparent_temperature_min_time = datetime.fromtimestamp(day.get('apparentTemperatureMinTime')),
apparent_temperature_max = day.get('apparentTemperatureMax'),
apparent_temperature_max_time = datetime.fromtimestamp(day.get('apparentTemperatureMaxTime')),
dew_point = day.get('dewPoint'),
humidity = day.get('humidity'),
wind_speed = day.get('windSpeed'),
wind_bearing = day.get('windBearing'),
visibility = day.get('visibility'),
cloud_cover = day.get('cloudCover'),
pressure = day.get('pressure'),
ozone = day.get('ozone')
)
weather.create()
if __name__ == '__main__':
io_loop = tornado.ioloop.IOLoop.instance()
connect("DATABASE", host="localhost", port=27017, io_loop=io_loop)
forecastio_api()
io_loop.start()
这是使用Motornegine的天气等级:
from tornado import gen
from motorengine import Document
from motorengine.fields import DateTimeField, DecimalField, ReferenceField, StringField
from src.db.city import City
class Weather(Document):
__collection__ = 'weather'
__lazy__ = False
city = ReferenceField(reference_document_type=City)
time = DateTimeField(required=True)
summary = StringField()
icon = StringField()
sunrise_time = DateTimeField()
sunset_time = DateTimeField()
moon_phase = DecimalField(precision=2)
precip_intensity = DecimalField(precision=4)
precip_intensity_max = DecimalField(precision=4)
precip_intensity_max_time = DateTimeField()
precip_probability = DecimalField(precision=2)
precip_type = StringField()
temperature_min = DecimalField(precision=2)
temperature_min_time = DateTimeField()
temperature_max = DecimalField(precision=2)
temperature_max_time = DateTimeField()
apparent_temperature_min = DecimalField(precision=2)
apparent_temperature_min_time = DateTimeField()
apparent_temperature_max = DecimalField(precision=2)
apparent_temperature_max_time = DateTimeField()
dew_point = DecimalField(precision=2)
humidity = DecimalField(precision=2)
wind_speed = DecimalField(precision=2)
wind_bearing = DecimalField(precision=2)
visibility = DecimalField(precision=2)
cloud_cover = DecimalField(precision=2)
pressure = DecimalField(precision=2)
ozone = DecimalField(precision=2)
create_time = DateTimeField(auto_now_on_insert=True)
@gen.coroutine
def create(self):
yield self.save()
答案 0 :(得分:1)
您可以查看Schematics。这个库可以帮助您定义可以从dicts轻松填充的对象(您可以轻松地将json转换为python dict)。它允许您为每个属性定义验证规则。当某些属性丢失或格式错误时,该对象将抛出ModelValidationError
错误。 Schematics允许您在定义模型时添加默认值和更多好东西。