边缘交叉算法?

时间:2010-08-11 21:17:04

标签: c++ c algorithm

给定Polygon P,我按顺序排列它们。我有一个带有4个顶点的矩形R我怎么能这样做:

如果P的任何边(相邻顶点之间的线)与R的边相交,则返回TRUE,否则返回FALSE。

由于

      *             *    


      *             *    

4 个答案:

答案 0 :(得分:2)

您想要的是一种快速确定线段是否与轴对齐矩形相交的方法。然后只需检查边缘列表中与矩形相对应的每个线段。您可以执行以下操作:

1)将线投影到X轴上,产生间隔L x 2)将矩形投影到X轴上,得到间隔R x 3)如果L x 且R x 不相交,则线和矩形不相交。

[Y轴重复]:

4)将线投影到Y轴上,得到间隔L y 5)将矩形投影到Y轴上,得到间隔R y 6)如果L y 且R y 不相交,则线和矩形不相交。

7)...
8)他们相交。

注意,如果我们到达步骤7,则形状不能通过轴对齐线分开。现在要确定的是线是否完全在矩形之外。我们可以通过检查矩形上的所有角点是否在线的同一侧来确定这一点。如果是,则线和矩形不相交。

1-3和4-6背后的想法来自separating axis theorem;如果我们找不到分离轴,它们必须相交。 所有这些案例必须经过测试才能断定它们相交。

以下是匹配代码:

#include <iostream>
#include <utility>
#include <vector>

typedef double number; // number type

struct point
{
    number x;
    number y;
};

point make_point(number pX, number pY)
{
    point r = {pX, pY};
    return r;
}

typedef std::pair<number, number> interval; // start, end
typedef std::pair<point, point> segment; // start, end
typedef std::pair<point, point> rectangle; // top-left, bottom-right

namespace classification
{
    enum type
    {
        positive = 1,
        same = 0,
        negative = -1
    };
}

classification::type classify_point(const point& pPoint,
                                    const segment& pSegment)
{
    // implicit line equation
    number x = (pSegment.first.y - pSegment.second.y) * pPoint.x +
                (pSegment.second.x - pSegment.first.x) * pPoint.y +
                (pSegment.first.x * pSegment.second.y -
                 pSegment.second.x * pSegment.first.y);

    // careful with floating point types, should use approximation
    if (x == 0)
    {
        return classification::same;
    }
    else
    {
        return (x > 0) ? classification::positive :classification::negative;
    }
}

bool number_interval(number pX, const interval& pInterval)
{
    if (pInterval.first < pInterval.second)
    {
        return pX > pInterval.first && pX < pInterval.second;
    }
    else
    {
        return pX > pInterval.second && pX < pInterval.first;
    }
}

bool inteveral_interval(const interval& pFirst, const interval& pSecond)
{
    return number_interval(pFirst.first, pSecond) ||
            number_interval(pFirst.second, pSecond) ||
            number_interval(pSecond.first, pFirst) ||
            number_interval(pSecond.second, pFirst);
}

bool segment_rectangle(const segment& pSegment, const rectangle& pRectangle)
{
    // project onto x (discard y values)
    interval segmentX =
                std::make_pair(pSegment.first.x, pSegment.second.x);
    interval rectangleX =
                std::make_pair(pRectangle.first.x, pRectangle.second.x);

    if (!inteveral_interval(segmentX, rectangleX))
        return false;

    // project onto y (discard x values)
    interval segmentY =
                std::make_pair(pSegment.first.y, pSegment.second.y);
    interval rectangleY =
                std::make_pair(pRectangle.first.y, pRectangle.second.y);

    if (!inteveral_interval(segmentY, rectangleY))
        return false;

    // test rectangle location
    point p0 = make_point(pRectangle.first.x, pRectangle.first.y);
    point p1 = make_point(pRectangle.second.x, pRectangle.first.y);
    point p2 = make_point(pRectangle.second.x, pRectangle.second.y);
    point p3 = make_point(pRectangle.first.x, pRectangle.second.y);

    classification::type c0 = classify_point(p0, pSegment);
    classification::type c1 = classify_point(p1, pSegment);
    classification::type c2 = classify_point(p2, pSegment);
    classification::type c3 = classify_point(p3, pSegment);

    // test they all classify the same
    return !((c0 == c1) && (c1 == c2) && (c2 == c3));
}

int main(void)
{
    rectangle r = std::make_pair(make_point(1, 1), make_point(5, 5));
    segment s0 = std::make_pair(make_point(0, 3), make_point(2, -3));
    segment s1 = std::make_pair(make_point(0, 0), make_point(3, 0));
    segment s2 = std::make_pair(make_point(3, 0), make_point(3, 6));
    segment s3 = std::make_pair(make_point(2, 3), make_point(9, 8));

    std::cout << std::boolalpha;
    std::cout << segment_rectangle(s0, r) << std::endl;
    std::cout << segment_rectangle(s1, r) << std::endl;
    std::cout << segment_rectangle(s2, r) << std::endl;
    std::cout << segment_rectangle(s3, r) << std::endl;
}

希望这是有道理的。

答案 1 :(得分:0)

我认为你的问题等同于凸多边形交集,在这种情况下this可能有所帮助。另见:How do I determine if two convex polygons intersect?

答案 2 :(得分:0)

显然未经测试,但是粗糙的伪代码:

// test two points against an edge
function intersects ( side, lower, upper, pt1Perp, pt1Par, pt2Perp, pt2Par )
{
    if ( ( pt1Perp < side and pt2Perp > side ) or ( pt1Perp > side and pt2Perp < side )
    {
        intersection = (side - pt1Perp) * (pt2Par - pt1Par) / (pt2Perp - pt1Perp);
        return (intersection >= lower and intersection <= higher);
    }
    else
    {
        return false;
    }
}

// left, right, bottom, top are the bounds of R
for pt1, pt2 adjacent in P  // don't forget to do last,first
{
    if ( intersects ( left, bottom, top, pt1.x, pt1.y, pt2.x, pt2.y )
         or intersects ( right, bottom, top, pt1.x, pt1.y, pt2.x, pt2.y )
         or intersects ( top, left, right, pt1.y, pt1.x, pt2.y, pt2.x )
         or intersects ( bottom, left, right, pt1.y, pt1.x, pt2.y, pt2.x ) )
    {
        return true;
    }
}

基本上,如果两个相邻的P顶点位于其中一个R边缘的两侧,请检查交叉点是否在范围内。

答案 3 :(得分:0)

仅供参考,geometrictools是这类事物的绝佳资源(尤其是数学部分)