我目前正在尝试实施RK4例程。在这个过程中,我努力匹配准确性顺序并发现scipy.signal.lsim2()
遇到同样的问题,即使使用ODEPACK中的LSODA(它应该比RK4更好)。
import numpy as np
import scipy as sp
from scipy import signal
from sympy import meijerg, exp, lambdify, vectorize
from sympy.abc import t
# time and input
t0 = np.linspace(0, 0.5, 200+1) # time vector
u0 = np.ones_like(t0) # input vector (step)
# transfer function
sys = signal.TransferFunction([147.4, 2948.], [1., 162.14, 2948.])
# exact solution
expr_t = 147.4*meijerg(((-140.272532338765, -20.0, -19.8674676612354, 1), ()),
((), (-141.272532338765, -20.8674676612354, -19.0, 0)),
exp(t))
expr_ft = lambdify(t, expr_t)
expr_vft = vectorize(0)(lambda t: float(expr_ft(t)))
y_exact = np.array(expr_vft(t0))
h = t0[1] - t0[0]
print "Time step: h =", h
print "h^4 =", h**4
print "h^5 =", h**5
tout, y1, x1 = signal.lsim(sys, u0, t0)
print "Max global error lsim :", max(abs(y_exact - y1))
print "Max local error lsim :", max(abs((y_exact[1:] - y_exact[:-1]) - (y1[1:] - y1[:-1])))
tout, y2, x2 = signal.lsim2(sys, u0, t0)
print "Max global error lsim2:", max(abs(y_exact - y2))
print "Max local error lsim2:", max(abs((y_exact[1:] - y_exact[:-1]) - (y2[1:] - y2[:-1])))
这将打印:
Time step: h = 0.0025
h^4 = 3.90625e-11
h^5 = 9.765625e-14
Max global error lsim : 1.02140518266e-14
Max local error lsim : 1.80966353014e-14
Max global error lsim2: 2.62325227174e-06
Max local error lsim2: 5.13960676496e-06
由于RK4是一个四阶求解器而且LSODA正在运行更多步骤,所以我不应该获得更好的准确度吗?
为了完整起见,我还使用scipy.integrate.ode()
完成了所有操作,将积分器设置为" dopri5" (明确(4)5阶Runge-Kutta Dormand-Prince):
def dy(t, y0, u0=1.):
return np.dot(sys.A, y0)+np.dot(sys.B, np.atleast_1d(u0))
def fy(x, u0=1.):
return np.dot(sys.C, x)+np.dot(sys.D, np.atleast_1d(u0))
ode3 = integrate.ode(dy)
ode3.set_integrator('dopri5').set_initial_value(np.r_[0.,0.])
x3 = np.zeros((len(t0), 2))
for i in range(1, len(t0)):
x3[i] = ode3.integrate(t0[i])
y3 = np.squeeze(np.apply_along_axis(fy, 1, x3))
print "Max global error dopri5:", max(abs(y_exact - y3))
print "Max local error dopri5:", max(abs((y_exact[1:] - y_exact[:-1]) - (y3[1:] - y3[:-1])))
打印哪些:
Max global error dopri5: 2.36753650018e-08
Max local error dopri5: 6.88440715546e-09
最后,问题是: lsim2()
实施是否存在任何问题或预计会出现这些错误级别?不应该错误低于h^4 = 3.90625e-11
吗?我检查了大部分代码,但无法发现任何问题。我还比较了我手工制作的RK4功能,它也会出现Xe-06错误。 我对O(h ^ 5)和o(h ^ 4)错误符号的解释是否有问题?