我从一个据称简单的设置开始,结果变得非常具有挑战性:
说,我们有一个碗,其中包含W = 60个白球,B = 10个蓝色球,G = 10个绿球,Y = 10个黄色球。 现在我开始从那个碗里画出三角形并存放它们,直到碗是空的。 但是,有一条规则:
RULE:
每个三联体可能不包含多个相同颜色的非白球!
完成后我分别对0,1,2和3个非白球的三元组比例感兴趣。
为了解决这个问题,我开始考虑绘制和拒绝样本,直到有一个样本,它填满了上面的规则。
我试过这个(希望可以重现的)代码:
W = rep(0, times = 60)
BGY = c(rep(1, times = 10),rep(2, times = 10),rep(3, times = 10))
sumup = matrix(c(rep(1,times=3)),byrow=FALSE)
OUTPUT = c(0,0,0,0)
getBALLS = function(W,BGY){
k = 0
while (k == 0){
POT = c(W, BGY)
STEPS = (length(W) + length(BGY))/3
randPOT <<- sample(POT, STEPS*3, replace=FALSE)
for(j in 1:STEPS){
if (.subset2(randPOT,3*j-2)!=.subset2(randPOT,3*j-1) &&
.subset2(randPOT,3*j-2)!= .subset2(randPOT,3*j) &&
.subset2(randPOT,3*j-1)!=.subset2(randPOT,3*j)){
next
}
else getBALLS(W, BGY)
}
k = 1
}
TABLES = matrix(randPOT, nrow=3, byrow=FALSE)
Bdistr = t(TABLES) %*% sumup
for(i in 1:STEPS){
if (.subset2(Bdistr,i)==1) OUTPUT[1] <<- .subset2(OUTPUT,1)+1
else if (.subset2(Bdistr,i)==0) OUTPUT[4] <<- .subset2(OUTPUT,4)+1
else if (.subset2(Bdistr,i)==2) OUTPUT[2] <<- .subset2(OUTPUT,2)+1
else OUTPUT[3] <<- .subset2(OUTPUT,3)+1
}
rOUTPUT = OUTPUT/ STEPS
return(rOUTPUT)
}
set.seed(1)
getBALLS(W,BGY)
不幸的是我遇到了两个问题:
接下来我尝试了两阶段采样(更具体的是mstage
包中的sampling
函数):
Stage1 = c( rep(0,12), rep(1,3), rep(2,3) )
Stage2 = c( rep(0,12), rep(1,3), rep(2,3) )
b = data.frame(Stage1, Stage2)
probs = list( list( (1/12) , (1/3), (1/3) ), list( rep(1/12,12),rep(1/3,3),rep(1/3,3) ) )
m = mstage( b, stage = list("cluster","cluster"), varnames = list("Stage1","Stage2"),
size = list(3,c(1,1,1)), method = "systematic", pik = probs)
虽然这也没有成功,但我也觉得这种方法并不适合我的问题!
总而言之,在我看来,我有点像使用大锤来破解坚果,我觉得有更有效的方法来解决这个问题(特别是因为我想要运行一些Monte-之后的卡罗模拟。
我很感激任何帮助! 提前谢谢!
答案 0 :(得分:2)
这是一种替代方法,毫无疑问可以改进,但我认为它具有某种统计意义(在三个样本中具有特定颜色使得另一种颜色不太可能在三个相同的样本中)。
coloursinsamples <- function (W,B,G,Y){
WBGY <- c(W,B,G,Y)
if(sum(WBGY) %% 3 != 0){ warning("cannot take exact full sample") }
numbersamples <- sum(WBGY) / 3
if(max(WBGY[2:4]) > numbersamples){ warning("too many of a colour") }
weights <- rep(3,numbersamples)
sampleB <- sample(numbersamples, size=WBGY[2], prob=weights)
weights[sampleB] <- weights[sampleB]-1
sampleG <- sample(numbersamples, size=WBGY[3], prob=weights)
weights[sampleG] <- weights[sampleG]-1
sampleY <- sample(numbersamples, size=WBGY[4], prob=weights)
weights[sampleY] <- weights[sampleY]-1
numbercolours <- table(table(c(sampleB,sampleG,sampleY)))
result <- c("0" = numbersamples - sum(numbercolours), numbercolours)
if(! "1" %in% names(result)){ result <- c(result, "1"=0) }
if(! "2" %in% names(result)){ result <- c(result, "2"=0) }
if(! "3" %in% names(result)){ result <- c(result, "3"=0) }
result[as.character(0:3)]
}
set.seed(1)
coloursinsamples(6,1,1,1)
coloursinsamples(60,10,10,10)
coloursinsamples(600,100,100,100)
coloursinsamples(6000,1000,1000,1000)