确定几何形状层次的算法

时间:2016-01-01 00:41:04

标签: c# algorithm binary-search-tree

我一直在努力开发一种算法来根据一个形状是否完全封闭在另一个形状的周边内来对一组封闭的几何图形进行排序。完全分析后,我应该得到一个定义层次结构的树结构。

我可以处理实际的比较,即一个形状是否完全在另一个形状的周边。虽然对无组织输入进行了排序,但我遇到了困难。我怀疑解决方案涉及二叉树结构和递归代码,我从来没有这么做过。

几何数据在生成排序的层次结构数据之前已经被清理过,因此开放路径,重叠,部分重叠和自相交等问题应该不是问题。

以下是我一直在使用的一组测试数据,可能有助于说明我的问题。

enter image description here

作为一个人,我可以看到黄色的形状不在蓝色的内部,黄色也不在黄色的内部。它们都在绿色形状内,在红色内......等等。 (向那些色盲的人道歉)

结果树如下:

enter image description here

我在C#工作,但不认为它与问题有关。

谢谢

编辑1

更简洁的问题可能是“如何使用正确的顺序生成此树?” (给定的数据没有特别的顺序)。这只是你的基本教科书“二叉搜索树插入”,我可能过度思考了吗?

编辑2

尝试将Norlesh的伪代码转换为c#并将其绑定到我现有的代码中,我最终得到以下内容:

        // Return list of shapes contained within container contour but no other
    private List<NPContour> DirectlyContained(NPContour container, List<NPContour> contours)
    {
        List<NPContour> result = new List<NPContour>();

        foreach (NPContour contour in contours)
        {
            if (container.Contains(contour))
            {
                foreach (NPContour other in contours)
                {
                    if (other.Contains(contour))
                        break;
                    result.Add(contour);
                }
            }
        }

        return result;
    }

    // Recursively build tree structure with each node being a list of its children
    private void BuildTree(NPContourTreeNode2 parent, List<NPContour> contours)
    {
        List<NPContour> children = DirectlyContained(parent.Contour, contours);

        if (children.Count > 0)
        {
            // TODO: There's probably a faster or more elegant way to do this but this is clear and good enough for now
            foreach (NPContour child in children)
            {
                contours.Remove(child);
                parent.Children.Add(new NPContourTreeNode2(child));
            }

            foreach (NPContourTreeNode2 child in parent.Children)
            {
                BuildTree(child, contours);
            }
        }
    }

...和调用代码......

            List<NPContour> contours = new List<NPContour>();
        List<NPContour> _topLevelContours = new List<NPContour>();
        bool contained = false;

        foreach (NPChain chain in _chains)
        {
            if (chain.Closed)
            {
                NPContour newContour = new NPContour(chain);
                contours.Add(newContour);
            }
        }

        //foreach (NPContour contour in contours)
        for (int i = 0; i < contours.Count(); i++)
        {
            contained = false;
            foreach (NPContour container in contours)
            {
                if (container.Contains(contours[i]))
                {
                    contained = true;
                    continue;
                }
            }
            if (contained == false)
            {
                _topLevelContours.Add(contours[i]);
                contours.Remove(contours[i]);
            }
        }

        foreach (NPContour topLevelContour in _topLevelContours)
        {
            NPContourTreeNode2 topLevelNode = new NPContourTreeNode2(topLevelContour);
            BuildTree(topLevelNode, contours);
        }

我想我必须在翻译中误解某些内容,因为它不起作用。我将继续关注它,但我想我会在这里发布代码,希望有人可以帮我指出我的错误。

请注意,伪代码中存在差异,因为buildTree没有返回任何内容,但在调用代码中,返回值被附加到...嗯,我有点困惑,究竟是什么本来应该去那儿。我对这个例子有了一般的看法,但我认为可能有一些重要的问题在我身上丢失了。

到目前为止,在我的简短调试中,我似乎从下面的例子中获得了多个顶级形状(而应该只有一个)和各种孩子的倍数(类似于55?)。我希望以后能够提供更多调试信息。

1 个答案:

答案 0 :(得分:1)

以下是一些伪代码,可以实现您的尝试:

// return true if shape is enclosed completely inside container function contains(container, shape); // return list of shapes contained within container shape but no other. function directlyContained(container, shapes) { result = [] for (shape in shapes) { if (contains(container, shape)) { // check its not further down hierarchy for (other in shapes) { if (contains(other, shape)) { break // not the top level container } result.append(shape) } } } return result; } // recursively build tree structure with each node being a list of its children // - removes members of shapes list as they are claimed. function buildTree(parent, shapes) { children = directlyContained(parent, shapes) if (children.length > 0) { shapes.remove(children); parent.append(children); for (child in children) { // recall on each child buildTree(child, shapes); } } } function findTopLevel(shapes) { result = [] // find the one or more top level shapes that are not contained for shape in shapes { contained = false; for (container in shapes) { if (contains(container, shape)) { contained = true; continue; } } if (contained = false) { scene.append(shape); shapes.remove(shape); } } return result; } shapes = <...>; // list initialized with the unsorted shapes scene = findTopLevel(shapes); shapes.remove(scene); for (top in scene) { buildTree(top, shapes); }