挣扎于“ValueError:解压缩的值太多”错误,在运行下面的代码时,目的是为每个键构建一个值的直方图:
%pyspark
import datetime
from pyspark.sql import SQLContext, Row
def featVecSms( x ):
sttm = datetime.datetime.strptime( x[1], '%Y%m%dT%H%M%S.%f' )
hourOfDay = int( sttm.strftime( '%H' ) )
dayOfWeek = int( sttm.strftime( '%w' ) )
dayOfMonth = int( sttm.strftime( '%d' ) )
duration = datetime.datetime.strptime( x[2], '%Y%m%dT%H%M%S.%f' ) - sttm
duration = duration.total_seconds()
service = x[3]
resultCode = int( x[4] )
msc = x[5]
actionMap = {
"0":'fsm',
"1":'fsm',
"2000":'sri',
"2001":'sri',
"2100":'sri',
"2101":'sri',
"2102":'fsm',
"2200":'sri',
"2201":'sri',
"2202":'fsm',
"2203":'fsm',
"2204":'fsm',
"2205":'fsm',
"2206":'fsm',
"2207":'sri',
"2208":'sri',
"2209":'sri',
"2210":'fsm',
"2211":'fsm',
"2212":'fsm',
"2213":'fsm',
"2214":'fsm',
"2215":'sri',
"2216":'fsm'
}
action = actionMap.get( x[4] )
return ( x[0], hourOfDay, dayOfWeek, dayOfMonth, duration, service, resultCode, msc, action )
textFile = sc.textFile("/export/sampleMsesAll.txt")
enTuples = textFile.map(lambda x: x.split("', u'"))
msRec = enTuples.map( featVecSms )
def countByCrit( accVal, currVal, idx ):
accVal[ int( currVal[ idx ] ) ] = accVal( [ int( currVal[ idx ] ) ] ) + 1
return accVal
def countByTod( accVal, currVal ):
return countByCrit( accVal, currVal, 1 )
todmap = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
msTodSuccess = msRec.filter( lambda x: x[2] >= 0 ).foldByKey( todmap, countByTod )
#.map( lambda x: ( x[0], reduce( lambda x,y: x + str(y), x[2], "" ) ) )
msTodSuccess.collect()
抛出错误:
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 52.0 failed 1 times, most recent failure: Lost task 1.0 in stage 52.0 (TID 115, localhost): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/export/edrsSmartRetry/code/spark-1.5.2/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
process()
File "/export/edrsSmartRetry/code/spark-1.5.2/python/lib/pyspark.zip/pyspark/worker.py", line 106, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/export/edrsSmartRetry/code/spark-1.5.2/python/pyspark/rdd.py", line 2355, in pipeline_func
return func(split, prev_func(split, iterator))
File "/export/edrsSmartRetry/code/spark-1.5.2/python/pyspark/rdd.py", line 2355, in pipeline_func
return func(split, prev_func(split, iterator))
File "/export/edrsSmartRetry/code/spark-1.5.2/python/pyspark/rdd.py", line 317, in func
return f(iterator)
File "/export/edrsSmartRetry/code/spark-1.5.2/python/pyspark/rdd.py", line 1780, in combineLocally
merger.mergeValues(iterator)
File "/export/edrsSmartRetry/code/spark-1.5.2/python/lib/pyspark.zip/pyspark/shuffle.py", line 266, in mergeValues
for k, v in iterator:
ValueError: too many values to unpack
数据如下所示:
$ head -15 /export/sampleMses10M.txt/part-00000
(u'263775998314', u'20151119T180719.000349', u'20151120T074928.837095', u'GoodMorning', u'2210', u'263775998314')
(u'263779563529', u'20151119T181318.000201', u'20151120T122346.432229', u'GoodMorning', u'2204', u'undefined')
(u'263783104169', u'20151120T092503.000629', u'20151120T111833.430649', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T092316.000331', u'20151120T125251.794699', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T092621.000557', u'20151120T125514.904726', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T092621.000557', u'20151120T135521.395529', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T092503.000629', u'20151120T145418.069707', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T092621.000557', u'20151120T145526.133207', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T154208.000410', u'20151120T154345.379585', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T154319.000636', u'20151120T154647.354102', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T154406.000245', u'20151120T154904.993095', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T154319.000636', u'20151120T164653.173588', u'Strangenet', u'2215', u'263770010027')
(u'263783104169', u'20151120T154406.000245', u'20151120T164909.888433', u'Strangenet', u'2215', u'263770010027')
(u'263774918225', u'20151120T090505.000269', u'20151120T102248.630188', u'StrangeCash', u'0', u'263770010027')
(u'263782099158', u'20151119T182038.000537', u'20151120T064040.240860', u'GoodMorning', u'0', u'263770010500')
只有123k样本,但申请中应该有数千万条记录。
答案 0 :(得分:7)
您的代码问题在于您的类型错误。
首先,*byKey
方法在PairwiseRDDs
上运行。在Python中它意味着RDD包含长度为2的元组或其他结构(让我们称之为pair
),它可以像这样解压缩:
k, v = pair
msRec
包含长度为9的元素,显然不会在这里工作。
第二个问题是您使用了错误的转换。我们来看看Scala中foldByKey
的签名:
def foldByKey(zeroValue: V)(func: (V, V) ⇒ V): RDD[(K, V)]
其中V
是值的类型(RDD[(K, V)]
)。正如您所看到的那样zeroValue
并且返回的函数类型应该与值的类型相同,这显然不是这里的情况。
如果结果类型与输入类型不同,则应使用combineByKey
或aggregateByKey
。