我们有一个使用掩码的矢量numpy get_pos_neg_bitwise 函数= [132 20 192] 和(500e3,4)的df.shape,我们想用numba加速。
from numba import jit
import numpy as np
from time import time
def get_pos_neg_bitwise(df, mask):
"""
In [1]: print mask
[132 20 192]
In [1]: print df
[[ 1 162 97 41]
[ 0 136 135 171]
...,
[ 0 245 30 73]]
"""
check = (np.bitwise_and(mask, df[:, 1:]) == mask).all(axis=1)
pos = (df[:, 0] == 1) & check
neg = (df[:, 0] == 0) & check
pos = np.nonzero(pos)[0]
neg = np.nonzero(neg)[0]
return (pos, neg)
使用@morningsun的提示我们制作了这个numba版本:
@jit(nopython=True)
def numba_get_pos_neg_bitwise(df, mask):
posneg = np.zeros((df.shape[0], 2))
for idx in range(df.shape[0]):
vandmask = np.bitwise_and(df[idx, 1:], mask)
# numba fail with # if np.all(vandmask == mask):
vandm_equal_m = 1
for i, val in enumerate(vandmask):
if val != mask[i]:
vandm_equal_m = 0
break
if vandm_equal_m == 1:
if df[idx, 0] == 1:
posneg[idx, 0] = 1
else:
posneg[idx, 1] = 1
pos = list(np.nonzero(posneg[:, 0])[0])
neg = list(np.nonzero(posneg[:, 1])[0])
return (pos, neg)
但它仍比numpy慢3倍(~0.06s Vs~0,02s)。
if __name__ == '__main__':
df = np.array(np.random.randint(256, size=(int(500e3), 4)))
df[:, 0] = np.random.randint(2, size=(1, df.shape[0])) # set target to 0 or 1
mask = np.array([132, 20, 192])
start = time()
pos, neg = get_pos_neg_bitwise(df, mask)
msg = '==> pos, neg made; p={}, n={} in [{:.4} s] numpy'
print msg.format(len(pos), len(neg), time() - start)
start = time()
msg = '==> pos, neg made; p={}, n={} in [{:.4} s] numba'
pos, neg = numba_get_pos_neg_bitwise(df, mask)
print msg.format(len(pos), len(neg), time() - start)
start = time()
pos, neg = numba_get_pos_neg_bitwise(df, mask)
print msg.format(len(pos), len(neg), time() - start)
我错过了什么吗?
In [1]: %run numba_test2.py
==> pos, neg made; p=3852, n=3957 in [0.02306 s] numpy
==> pos, neg made; p=3852, n=3957 in [0.3492 s] numba
==> pos, neg made; p=3852, n=3957 in [0.06425 s] numba
In [1]:
答案 0 :(得分:10)
尝试将调用移到循环外的np.bitwise_and
,因为numba无法做任何事情来加快速度:
@jit(nopython=True)
def numba_get_pos_neg_bitwise(df, mask):
posneg = np.zeros((df.shape[0], 2))
vandmask = np.bitwise_and(df[:, 1:], mask)
for idx in range(df.shape[0]):
# numba fail with # if np.all(vandmask == mask):
vandm_equal_m = 1
for i, val in enumerate(vandmask[idx]):
if val != mask[i]:
vandm_equal_m = 0
break
if vandm_equal_m == 1:
if df[idx, 0] == 1:
posneg[idx, 0] = 1
else:
posneg[idx, 1] = 1
pos = np.nonzero(posneg[:, 0])[0]
neg = np.nonzero(posneg[:, 1])[0]
return (pos, neg)
然后我得到了时间:
==> pos, neg made; p=3920, n=4023 in [0.02352 s] numpy
==> pos, neg made; p=3920, n=4023 in [0.2896 s] numba
==> pos, neg made; p=3920, n=4023 in [0.01539 s] numba
所以现在numba比numpy快一点。
此外,它没有产生太大的影响,但在原始函数中,您返回numpy数组,而在numba版本中,您将pos
和neg
转换为列表。
一般来说,我猜测函数调用由numpy函数控制,numba无法加速,而numpy版本的代码已经在使用快速矢量化例程。
<强>更新强>
您可以通过将enumerate
调用和索引直接删除到数组而不是抓取切片来加快速度。同时将pos
和neg
拆分为单独的数组有助于避免在内存中沿着非连续轴切片:
@jit(nopython=True)
def numba_get_pos_neg_bitwise(df, mask):
pos = np.zeros(df.shape[0])
neg = np.zeros(df.shape[0])
vandmask = np.bitwise_and(df[:, 1:], mask)
for idx in range(df.shape[0]):
# numba fail with # if np.all(vandmask == mask):
vandm_equal_m = 1
for i in xrange(vandmask.shape[1]):
if vandmask[idx,i] != mask[i]:
vandm_equal_m = 0
break
if vandm_equal_m == 1:
if df[idx, 0] == 1:
pos[idx] = 1
else:
neg[idx] = 1
pos = np.nonzero(pos)[0]
neg = np.nonzero(neg)[0]
return pos, neg
ipython笔记本中的时间安排:
%timeit pos1, neg1 = get_pos_neg_bitwise(df, mask)
%timeit pos2, neg2 = numba_get_pos_neg_bitwise(df, mask)
100 loops, best of 3: 18.2 ms per loop
100 loops, best of 3: 7.89 ms per loop