优化素数筛的速度(Java)

时间:2015-12-24 16:38:53

标签: java primes sieve-of-eratosthenes sieve

我正在使用Java中的方法来创建布尔数组 isPrime

boolean[] isPrime;

其中素数标有' true'其余的是“假”' 虽然我在这里,但我也想计算一下Primes的数量:

int numPrimesFound;

基本思想是使用Eratosthenes的Sieve。到目前为止,我的方法看起来像这样:

public Sieve(final int limit) {

    long startTime = System.currentTimeMillis();

    boolean[] isPrime = new boolean[limit];
    this.isPrime = isPrime;

    for (int i=3; i<=limit ;i+=2) {
        isPrime[i] = true;                        //sets all even numbers to true
    }

    isPrime[2] = true;
    numPrimesFound = 1;                           //special case of '2'

    for (int i = 3; i * i <= limit; i += 2) {
        if (isPrime[i] == true) {
            for (int j = i; i * j <= limit; j += 2) {

                isPrime[i * j] = false;           //has a multiple ==> not a prime

                numPrimesFound++;                 //doesn't work yet
            }
        }
    }

    long stopTime = System.currentTimeMillis();   //measuring execution time
    System.out.println("Sieve: " + (stopTime - startTime) + " milliseconds.")

}

所以我的问题是那个

numPrimesFound++:

不起作用,因为筛子将某些非素数的值设置为“假”和“假”。 不止一次(例如45 bcs 3 * 15 = 45,9 * 5 = 45)。
所以有人知道我如何重写这个程序,所以它将所有非素数设置为“假”&#39; 只有一次

或者一般来说,任何人都可以提出使方法更快的方法吗?

4 个答案:

答案 0 :(得分:1)

如果您使用BitSet,可以请求cardinality

public BitSet primes(final int limit) {

    long startTime = System.currentTimeMillis();
    BitSet isPrime = new BitSet(limit);
    // A bitSet starts all zeros but with a sieve - evrything must start prime.
    isPrime.flip(0, limit);

    // 0 and 1 are not prime
    isPrime.clear(0);
    isPrime.clear(1);

    for (int i = 2; i * i <= limit; i += 2) {
        if (isPrime.get(i)) {
            // Remove all multiples of i.
            for (int j = 2; i * j <= limit; j += 1) {
                isPrime.clear(i * j);
            }
        }
    }

    long stopTime = System.currentTimeMillis();   //measuring execution time
    System.out.println("Sieve: " + (stopTime - startTime) + " milliseconds.");
    return isPrime;
}

public void test() {
    BitSet primes = primes(50);
    System.out.println("Primes: " + primes);
    System.out.println("Count: " + primes.cardinality());
}

我还修复了你逻辑中的一些错误。例如。你的内循环是由j2而你的外循环没有移除所有偶数(从3开始)。

你当然可以改进这一点 - 谷歌是你的朋友。 :)

答案 1 :(得分:1)

这是我的版本:

import java.util.BitSet;
import java.util.Scanner;

public class Main {

public static void main(String[] args) {
    Scanner sc = new Scanner(System.in);
    System.out.println("Enter the interval limit: ");
    int limit = sc.nextInt();
    int max = (int) Math.sqrt(limit);
    long start = System.currentTimeMillis();
    BitSet intArray = new BitSet(limit);

    // 1 is not prime
    intArray.set(0);

    // 2 is the first prime number, so the first step is to filter out all even numbers
    for (int i = 2; (2 * i) - 1 < limit; i++) {
        intArray.set((2 * i) - 1);
    }

    //all remaining number will be odd
    int currentNumber = 3;
    // i is the multiplicator and will be adjusted with the current number , in order to avoid repetition
    int i = 3;
    int temp;

    while (currentNumber <= max) {
        // flag multiple of the current prime number
        do {
            temp = (currentNumber * i);
            if (temp > limit) break;
            intArray.set(temp - 1);
            i = i + 2;
        } while (temp <= limit);
        //all non-prime numbers until now are already flagged, therefore we can find the next prime number by checking the set-status.
        while (currentNumber + 2 <= limit) {
            currentNumber += 2;
            if (!intArray.get(currentNumber - 1)) {
                i = currentNumber;
                break;
            }
        }
    }

    int b = 0;
    for (int n = limit -1 ; n > 0; n--){
        if (!intArray.get(n)){
            b = n +1;
            break;
        }
    }
    System.out.println("There are " + (limit - intArray.cardinality()) + " PRIMES and the biggest is: " + b);
    System.out.println("Time in total: " + ((System.currentTimeMillis() - start) / 1000.0) + "s");
}
}

要检查100 mio数字,需要大约我的i7 3770k台式电脑上的0,7秒。

答案 2 :(得分:0)

你有一个困惑:

numPrimesFound ++;没关系,但它必须在循环之外(int j = i; i * j&lt; = limit; j + = 2)

你的主循环必须走得更远(或者你忘记了大于sqrt(极限)的素数

expire_dns_cache
在Eratosthenes Sieve中,通常会标记几次&#34;非素数&#34;号。

和i * j&lt;如果变得大于int(它变为负数),则极限为NOK

结果就是这样,但只有

 for (int i = 3; i < limit; i += 2) 

用你替换你的内循环,你至少可以去1000000

final int limit=40000; // 50 000 is too big !

你可以使用bitset

答案 3 :(得分:0)

好的..这就是我想出来的

long startTime = System.currentTimeMillis();
int limit = 100000;
boolean[] isPrime = new boolean[limit+1];

Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
int numPrimesFound = limit-1;                           

System.out.println("Sqrt is:" + Math.sqrt(limit));
for (int i=2; i < Math.sqrt(limit);i++) {
    if (isPrime[i] == true) {
        int inc = 0;
        while (true) {
            int j = (i*i) + (inc*i);
            if( j > limit) break;
            if (isPrime[j]) {
                isPrime[j]= false;
                numPrimesFound--;     
            }
            inc++;
        }
    }
}

System.out.println("Number of Primes" + numPrimesFound);
for (int i = 2; i < limit;i++) {
    if (isPrime[i]) 
        System.out.println("Prime#:" + i);
}
long stopTime = System.currentTimeMillis();   //measuring execution time
System.out.println("Sieve: " + (stopTime - startTime) + " milliseconds.");