我正在尝试在网站上关注Hadoop教程。我试图用Java实现它。提供的文件是包含论坛数据的文件。我想解析该文件并使用数据。
设置配置的代码如下:
public class ForumAnalyser extends Configured implements Tool{
public static void main(String[] args) {
int exitCode = 0;
try {
exitCode = ToolRunner.run(new ForumAnalyser(), args);
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
finally {
System.exit(exitCode);
}
}
@Override
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(ForumAnalyser.class);
setStudentHourPostJob(conf);
JobClient.runJob(conf);
return 0;
}
public static void setStudentHourPostJob(JobConf conf) {
FileInputFormat.setInputPaths(conf, new Path("input2"));
FileOutputFormat.setOutputPath(conf, new Path("output_forum_post"));
conf.setJarByClass(ForumAnalyser.class);
conf.setMapperClass(StudentHourPostMapper.class);
conf.setOutputKeyClass(LongWritable.class);
conf.setMapOutputKeyClass(LongWritable.class);
conf.setReducerClass(StudentHourPostReducer.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapOutputValueClass(IntWritable.class);
}
}
文件中的每条记录都以“\ n”分隔。所以在mapper类中,每个记录大多都是正确返回的。每个记录中的每列都由制表符分隔。特定列“帖子”出现问题。此列包含由人写的“帖子”,因此也包含“\ n”。因此,映射器错误地将“posts”列下的某一行读作新记录。此外,“posts”列特别是文件中的双引号。我的问题是: 1.如何告诉映射器正确区分每条记录?我可以以某种方式告诉它按标签阅读每一列吗? (我知道每条记录有多少列?)
提前感谢您的帮助。
答案 0 :(得分:1)
默认情况下,MapReduce使用TextInputFormat
,其中每条记录都是一行输入(它假设每条记录由新行(“\ n”)分隔)。
要满足您的要求,您需要编写自己的InputFormat
和RecordReader
类。对于例如在Mahout中,有一个XmlInputFormat
用于读取整个XML文件作为一条记录。请在此处查看代码:https://github.com/apache/mahout/blob/master/integration/src/main/java/org/apache/mahout/text/wikipedia/XmlInputFormat.java
我使用了XmlInputFormat
的代码并对其进行了修改以达到您的要求。以下是代码(我将其称为MultiLineInputFormat
和MultiLineRecordReader
):
package com.myorg.hadooptests;
import com.google.common.io.Closeables;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DataOutputBuffer;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
/**
* Reads records that are delimited by a specific begin/end tag.
*/
public class MultiLineInputFormat extends TextInputFormat {
private static final Logger log = LoggerFactory.getLogger(MultiLineInputFormat.class);
@Override
public RecordReader<LongWritable, Text> createRecordReader(InputSplit split, TaskAttemptContext context) {
try {
return new MultiLineRecordReader((FileSplit) split, context.getConfiguration());
} catch (IOException ioe) {
log.warn("Error while creating MultiLineRecordReader", ioe);
return null;
}
}
/**
* MultiLineRecordReader class to read through a given text document to output records containing multiple
* lines as a single line
*
*/
public static class MultiLineRecordReader extends RecordReader<LongWritable, Text> {
private final long start;
private final long end;
private final FSDataInputStream fsin;
private final DataOutputBuffer buffer = new DataOutputBuffer();
private LongWritable currentKey;
private Text currentValue;
private static final Logger log = LoggerFactory.getLogger(MultiLineRecordReader.class);
public MultiLineRecordReader(FileSplit split, Configuration conf) throws IOException {
// open the file and seek to the start of the split
start = split.getStart();
end = start + split.getLength();
Path file = split.getPath();
FileSystem fs = file.getFileSystem(conf);
fsin = fs.open(split.getPath());
fsin.seek(start);
log.info("start: " + Long.toString(start) + " end: " + Long.toString(end));
}
private boolean next(LongWritable key, Text value) throws IOException {
if (fsin.getPos() < end) {
try {
log.info("Started reading");
if(readUntilEnd()) {
key.set(fsin.getPos());
value.set(buffer.getData(), 0, buffer.getLength());
return true;
}
} finally {
buffer.reset();
}
}
return false;
}
@Override
public void close() throws IOException {
Closeables.closeQuietly(fsin);
}
@Override
public float getProgress() throws IOException {
return (fsin.getPos() - start) / (float) (end - start);
}
private boolean readUntilEnd() throws IOException {
boolean insideColumn = false;
byte[] delimiterBytes = new String("\"").getBytes("utf-8");
byte[] newLineBytes = new String("\n").getBytes("utf-8");
while (true) {
int b = fsin.read();
// end of file:
if (b == -1) return false;
log.info("Read: " + b);
// We encountered a Double Quote
if(b == delimiterBytes[0]) {
if(!insideColumn)
insideColumn = true;
else
insideColumn = false;
}
// If we encounter a new line and we are not inside a columnt, it means end of record.
if(b == newLineBytes[0] && !insideColumn) return true;
// save to buffer:
buffer.write(b);
// see if we've passed the stop point:
if (fsin.getPos() >= end) {
if(buffer.getLength() > 0) // If buffer has some data, then return true
return true;
else
return false;
}
}
}
@Override
public LongWritable getCurrentKey() throws IOException, InterruptedException {
return currentKey;
}
@Override
public Text getCurrentValue() throws IOException, InterruptedException {
return currentValue;
}
@Override
public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
}
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
currentKey = new LongWritable();
currentValue = new Text();
return next(currentKey, currentValue);
}
}
}
<强>逻辑:强>
readUntilEnd()
方法。为了测试这个,我编写了一个Identity Mapper(将输入按原样写入输出)。在驱动程序中,您明确指定输入格式作为自定义输入格式。
例如,我已将输入格式指定为:
job.setInputFormatClass(MultiLineInputFormat.class); // This is my custom class for InputFormat and RecordReader
以下是代码:
package com.myorg.hadooptests;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class MultiLineDemo {
public static class MultiLineMapper
extends Mapper<LongWritable, Text , Text, NullWritable> {
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
context.write(value, NullWritable.get());
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "MultiLineMapper");
job.setInputFormatClass(MultiLineInputFormat.class);
job.setJarByClass(MultiLineDemo.class);
job.setMapperClass(MultiLineMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.addInputPath(job, new Path("/in/in8.txt"));
FileOutputFormat.setOutputPath(job, new Path("/out/"));
job.waitForCompletion(true);
}
}
我在以下输入上运行了这个。输入记录与输出记录完全匹配。您可以在每条记录中看到第二个字段,包含新行(“\ n”),但仍会在输出中返回整个记录。
E:\ HadoopTests \ target&gt; hadoop fs -cat /in/in8.txt
1 "post1 \n" 3
1 "post2 \n post2 \n" 3
4 "post3 \n post3 \n post3 \n" 6
1 "post4 \n post4 \n post4 \n post4 \n" 6
E:\ HadoopTests \ target&gt; hadoop fs -cat / out / *
1 "post1 \n" 3
1 "post2 \n post2 \n" 3
1 "post4 \n post4 \n post4 \n post4 \n" 6
4 "post3 \n post3 \n post3 \n" 6
注意:我编写此代码用于演示目的。您需要处理极端情况(如果有)并优化代码(如果存在优化范围)。