我们有一个消息队列。我们希望并行处理消息并限制同时处理的消息的数量。
我们的下面的试用代码会并行处理消息,但只有在前一个进程完成后才会启动新批处理。我们想在完成任务时重启。
换句话说:只要消息队列不为空,任务的最大数量应始终处于活动状态。
static string queue = @".\Private$\concurrenttest";
private static void Process(CancellationToken token)
{
Task.Factory.StartNew(async () =>
{
while (true)
{
IEnumerable<Task> consumerTasks = ConsumerTasks();
await Task.WhenAll(consumerTasks);
await PeekAsync(new MessageQueue(queue));
}
});
}
private static IEnumerable<Task> ConsumerTasks()
{
for (int i = 0; i < 15; i++)
{
Command1 message;
try
{
MessageQueue msMq = new MessageQueue(queue);
msMq.Formatter = new XmlMessageFormatter(new Type[] { typeof(Command1) });
Message msg = msMq.Receive();
message = (Command1)msg.Body;
}
catch (MessageQueueException mqex)
{
if (mqex.MessageQueueErrorCode == MessageQueueErrorCode.IOTimeout)
yield break; // nothing in queue
else throw;
}
yield return Task.Run(() =>
{
Console.WriteLine("id: " + message.id + ", name: " + message.name);
Thread.Sleep(1000);
});
}
}
private static Task<Message> PeekAsync(MessageQueue msMq)
{
return Task.Factory.FromAsync<Message>(msMq.BeginPeek(), msMq.EndPeek);
}
答案 0 :(得分:5)
修改的
我花了很多时间考虑泵的可靠性 - 特别是如果从MessageQueue
收到消息,取消变得棘手 - 所以我提供了两种方法来终止队列:
CancellationToken
会尽快停止管道,并可能导致信息丢失。MessagePump.Stop()
会终止泵,但允许在MessagePump.Completion
任务转换为RanToCompletion
之前完全处理已从队列中获取的所有消息。解决方案使用TPL Dataflow(NuGet:Microsoft.Tpl.Dataflow)。
全面实施:
using System;
using System.Messaging;
using System.Threading;
using System.Threading.Tasks;
using System.Threading.Tasks.Dataflow;
namespace StackOverflow.Q34437298
{
/// <summary>
/// Pumps the message queue and processes messages in parallel.
/// </summary>
public sealed class MessagePump
{
/// <summary>
/// Creates a <see cref="MessagePump"/> and immediately starts pumping.
/// </summary>
public static MessagePump Run(
MessageQueue messageQueue,
Func<Message, Task> processMessage,
int maxDegreeOfParallelism,
CancellationToken ct = default(CancellationToken))
{
if (messageQueue == null) throw new ArgumentNullException(nameof(messageQueue));
if (processMessage == null) throw new ArgumentNullException(nameof(processMessage));
if (maxDegreeOfParallelism <= 0) throw new ArgumentOutOfRangeException(nameof(maxDegreeOfParallelism));
ct.ThrowIfCancellationRequested();
return new MessagePump(messageQueue, processMessage, maxDegreeOfParallelism, ct);
}
private readonly TaskCompletionSource<bool> _stop = new TaskCompletionSource<bool>();
/// <summary>
/// <see cref="Task"/> which completes when this instance
/// stops due to a <see cref="Stop"/> or cancellation request.
/// </summary>
public Task Completion { get; }
/// <summary>
/// Maximum number of parallel message processors.
/// </summary>
public int MaxDegreeOfParallelism { get; }
/// <summary>
/// <see cref="MessageQueue"/> that is pumped by this instance.
/// </summary>
public MessageQueue MessageQueue { get; }
/// <summary>
/// Creates a new <see cref="MessagePump"/> instance.
/// </summary>
private MessagePump(MessageQueue messageQueue, Func<Message, Task> processMessage, int maxDegreeOfParallelism, CancellationToken ct)
{
MessageQueue = messageQueue;
MaxDegreeOfParallelism = maxDegreeOfParallelism;
// Kick off the loop.
Completion = RunAsync(processMessage, ct);
}
/// <summary>
/// Soft-terminates the pump so that no more messages will be pumped.
/// Any messages already removed from the message queue will be
/// processed before this instance fully completes.
/// </summary>
public void Stop()
{
// Multiple calls to Stop are fine.
_stop.TrySetResult(true);
}
/// <summary>
/// Pump implementation.
/// </summary>
private async Task RunAsync(Func<Message, Task> processMessage, CancellationToken ct = default(CancellationToken))
{
using (CancellationTokenSource producerCTS = ct.CanBeCanceled
? CancellationTokenSource.CreateLinkedTokenSource(ct)
: new CancellationTokenSource())
{
// This CancellationToken will either be signaled
// externally, or if our consumer errors.
ct = producerCTS.Token;
// Handover between producer and consumer.
DataflowBlockOptions bufferOptions = new DataflowBlockOptions {
// There is no point in dequeuing more messages than we can process,
// so we'll throttle the producer by limiting the buffer capacity.
BoundedCapacity = MaxDegreeOfParallelism,
CancellationToken = ct
};
BufferBlock<Message> buffer = new BufferBlock<Message>(bufferOptions);
Task producer = Task.Run(async () =>
{
try
{
while (_stop.Task.Status != TaskStatus.RanToCompletion)
{
// This line and next line are the *only* two cancellation
// points which will not cause dropped messages.
ct.ThrowIfCancellationRequested();
Task<Message> peekTask = WithCancellation(PeekAsync(MessageQueue), ct);
if (await Task.WhenAny(peekTask, _stop.Task).ConfigureAwait(false) == _stop.Task)
{
// Stop was signaled before PeekAsync returned. Wind down the producer gracefully
// by breaking out and propagating completion to the consumer blocks.
break;
}
await peekTask.ConfigureAwait(false); // Observe Peek exceptions.
ct.ThrowIfCancellationRequested();
// Zero timeout means that we will error if someone else snatches the
// peeked message from the queue before we get to it (due to a race).
// I deemed this better than getting stuck waiting for a message which
// may never arrive, or, worse yet, let this ReceiveAsync run onobserved
// due to a cancellation (if we choose to abandon it like we do PeekAsync).
// You will have to restart the pump if this throws.
// Omit timeout if this behaviour is undesired.
Message message = await ReceiveAsync(MessageQueue, timeout: TimeSpan.Zero).ConfigureAwait(false);
await buffer.SendAsync(message, ct).ConfigureAwait(false);
}
}
finally
{
buffer.Complete();
}
},
ct);
// Wire up the parallel consumers.
ExecutionDataflowBlockOptions executionOptions = new ExecutionDataflowBlockOptions {
CancellationToken = ct,
MaxDegreeOfParallelism = MaxDegreeOfParallelism,
SingleProducerConstrained = true, // We don't require thread safety guarantees.
BoundedCapacity = MaxDegreeOfParallelism,
};
ActionBlock<Message> consumer = new ActionBlock<Message>(async message =>
{
ct.ThrowIfCancellationRequested();
await processMessage(message).ConfigureAwait(false);
},
executionOptions);
buffer.LinkTo(consumer, new DataflowLinkOptions { PropagateCompletion = true });
if (await Task.WhenAny(producer, consumer.Completion).ConfigureAwait(false) == consumer.Completion)
{
// If we got here, consumer probably errored. Stop the producer
// before we throw so we don't go dequeuing more messages.
producerCTS.Cancel();
}
// Task.WhenAll checks faulted tasks before checking any
// canceled tasks, so if our consumer threw a legitimate
// execption, that's what will be rethrown, not the OCE.
await Task.WhenAll(producer, consumer.Completion).ConfigureAwait(false);
}
}
/// <summary>
/// APM -> TAP conversion for MessageQueue.Begin/EndPeek.
/// </summary>
private static Task<Message> PeekAsync(MessageQueue messageQueue)
{
return Task.Factory.FromAsync(messageQueue.BeginPeek(), messageQueue.EndPeek);
}
/// <summary>
/// APM -> TAP conversion for MessageQueue.Begin/EndReceive.
/// </summary>
private static Task<Message> ReceiveAsync(MessageQueue messageQueue, TimeSpan timeout)
{
return Task.Factory.FromAsync(messageQueue.BeginReceive(timeout), messageQueue.EndPeek);
}
/// <summary>
/// Allows abandoning tasks which do not natively
/// support cancellation. Use with caution.
/// </summary>
private static async Task<T> WithCancellation<T>(Task<T> task, CancellationToken ct)
{
ct.ThrowIfCancellationRequested();
TaskCompletionSource<bool> tcs = new TaskCompletionSource<bool>();
using (ct.Register(s => ((TaskCompletionSource<bool>)s).TrySetResult(true), tcs, false))
{
if (task != await Task.WhenAny(task, tcs.Task).ConfigureAwait(false))
{
// Cancellation task completed first.
// We are abandoning the original task.
throw new OperationCanceledException(ct);
}
}
// Task completed: synchronously return result or propagate exceptions.
return await task.ConfigureAwait(false);
}
}
}
用法:
using (MessageQueue msMq = GetQueue())
{
MessagePump pump = MessagePump.Run(
msMq,
async message =>
{
await Task.Delay(50);
Console.WriteLine($"Finished processing message {message.Id}");
},
maxDegreeOfParallelism: 4
);
for (int i = 0; i < 100; i++)
{
msMq.Send(new Message());
Thread.Sleep(25);
}
pump.Stop();
await pump.Completion;
}
不整齐但功能单元测试:
https://gist.github.com/KirillShlenskiy/7f3e2c4b28b9f940c3da
原始回答
正如我的评论中所提到的,.NET中已经建立了生产者/消费者模式,其中之一就是管道。一个很好的例子可以在微软自己的Stephen Toub的“并行编程模式”中找到(全文见https://www.microsoft.com/en-au/download/details.aspx?id=19222,第55页)。
这个想法很简单:生产者不断地把东西扔进队列,消费者把它拉出来并处理(与生产者并行,可能是另一个)。
以下是消息管道的示例,消费者使用同步阻塞方法在项目到达时处理这些项目(我已根据您的方案对消费者进行了并行化):
void MessageQueueWithBlockingCollection()
{
// If your processing is continuous and never stops throughout the lifetime of
// your application, you can ignore the fact that BlockingCollection is IDisposable.
using (BlockingCollection<Message> messages = new BlockingCollection<Message>())
{
Task producer = Task.Run(() =>
{
try
{
for (int i = 0; i < 10; i++)
{
// Hand over the message to the consumer.
messages.Add(new Message());
// Simulated arrival delay for the next message.
Thread.Sleep(10);
}
}
finally
{
// Notify consumer that there is no more data.
messages.CompleteAdding();
}
});
Task consumer = Task.Run(() =>
{
ParallelOptions options = new ParallelOptions {
MaxDegreeOfParallelism = 4
};
Parallel.ForEach(messages.GetConsumingEnumerable(), options, message => {
ProcessMessage(message);
});
});
Task.WaitAll(producer, consumer);
}
}
void ProcessMessage(Message message)
{
Thread.Sleep(40);
}
上述代码大约在130-140毫秒内完成,这正是您在消费者并行化时所期望的。
现在,在您的方案中,您正在使用Task
和async
/ await
更适合TPL Dataflow(官方Microsoft支持的库,适用于并行和异步序列处理)。
这是一个小小的演示,展示了您将用于工作的不同类型的TPL数据流处理块:
async Task MessageQueueWithTPLDataflow()
{
// Set up our queue.
BufferBlock<Message> queue = new BufferBlock<Message>();
// Set up our processing stage (consumer).
ExecutionDataflowBlockOptions options = new ExecutionDataflowBlockOptions {
CancellationToken = CancellationToken.None, // Plug in your own in case you need to support cancellation.
MaxDegreeOfParallelism = 4
};
ActionBlock<Message> consumer = new ActionBlock<Message>(m => ProcessMessageAsync(m), options);
// Link the queue to the consumer.
queue.LinkTo(consumer, new DataflowLinkOptions { PropagateCompletion = true });
// Wire up our producer.
Task producer = Task.Run(async () =>
{
try
{
for (int i = 0; i < 10; i++)
{
queue.Post(new Message());
await Task.Delay(10).ConfigureAwait(false);
}
}
finally
{
// Signal to the consumer that there are no more items.
queue.Complete();
}
});
await consumer.Completion.ConfigureAwait(false);
}
Task ProcessMessageAsync(Message message)
{
return Task.Delay(40);
}
使用您的MessageQueue
进行调整并不难,您可以确定最终结果没有线程问题。如果今天/明天我有更多的时间,我会这样做。
答案 1 :(得分:1)
您有一系列要处理的事物。 您为正在处理的事物创建另一个集合(这可能是您的任务对象或某种引用任务的项目。)
您创建一个循环,只要您有工作要做,它就会重复。也就是说,工作项目正在等待启动,或者您仍在处理工作项目。
在循环开始时,您可以使用要同时运行的任务填充活动任务集合,并在添加它们时启动它们。
你让事情运行了一段时间(比如Thread.Sleep(10);)。
您创建一个内部循环,检查所有已启动的任务是否完成。如果已完成,则将其删除并报告结果或做任何合适的事情。
那就是它。在下一个回合中,外部循环的上半部分将向正在运行的任务集合添加任务,直到该数字等于您设置的最大值,从而使您的工作进度集合保持完整。
您可能希望在工作线程上执行所有这些操作并监视循环中的取消请求。
答案 2 :(得分:0)
.NET中的任务库可以并行执行许多任务。虽然有多种方法可以限制活动任务的数量,但库本身将根据计算机CPU限制活动任务的数量。
需要回答的第一个问题是,为什么需要创建另一个限制?如果任务库施加的限制是正常的,那么您可以保留创建任务并依赖任务库以良好的性能执行它。
如果没有问题,那么只要您从MSMQ收到消息,只需启动一个处理消息的任务,跳过等待(WhenAll调用),重新开始等待下一条消息。
您可以使用自定义任务计划程序限制并发任务的数量。有关MSDN的更多信息:https://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler%28v=vs.110%29.aspx。
答案 3 :(得分:0)
我的同事提出了以下解决方案。此解决方案有效,但我会在Code Review上审核此代码。
根据给出的答案和我们自己的一些研究,我们已经找到了解决方案。我们使用SemaphoreSlim
来限制并行任务的数量。
static string queue = @".\Private$\concurrenttest";
private static async Task Process(CancellationToken token)
{
MessageQueue msMq = new MessageQueue(queue);
msMq.Formatter = new XmlMessageFormatter(new Type[] { typeof(Command1) });
SemaphoreSlim s = new SemaphoreSlim(15, 15);
while (true)
{
await s.WaitAsync();
await PeekAsync(msMq);
Command1 message = await ReceiveAsync(msMq);
Task.Run(async () =>
{
try
{
await HandleMessage(message);
}
catch (Exception)
{
// Exception handling
}
s.Release();
});
}
}
private static Task HandleMessage(Command1 message)
{
Console.WriteLine("id: " + message.id + ", name: " + message.name);
Thread.Sleep(1000);
return Task.FromResult(1);
}
private static Task<Message> PeekAsync(MessageQueue msMq)
{
return Task.Factory.FromAsync<Message>(msMq.BeginPeek(), msMq.EndPeek);
}
public class Command1
{
public int id { get; set; }
public string name { get; set; }
}
private static async Task<Command1> ReceiveAsync(MessageQueue msMq)
{
var receiveAsync = await Task.Factory.FromAsync<Message>(msMq.BeginReceive(), msMq.EndPeek);
return (Command1)receiveAsync.Body;
}
答案 4 :(得分:0)
您应该考虑使用Microsoft的Reactive Framework。
您的代码可能如下所示:
var query =
from command1 in FromQueue<Command1>(queue)
from text in Observable.Start(() =>
{
Thread.Sleep(1000);
return "id: " + command1.id + ", name: " + command1.name;
})
select text;
var subscription =
query
.Subscribe(text => Console.WriteLine(text));
这将并行处理所有处理,并确保处理在所有核心上正确分布。当一个值结束时,另一个值开始。
要取消订阅,只需致电subscription.Dispose()
。
FromQueue
的代码是:
static IObservable<T> FromQueue<T>(string serverQueue)
{
return Observable.Create<T>(observer =>
{
var responseQueue = Environment.MachineName + "\\Private$\\" + Guid.NewGuid().ToString();
var queue = MessageQueue.Create(responseQueue);
var frm = new System.Messaging.BinaryMessageFormatter();
var srv = new MessageQueue(serverQueue);
srv.Formatter = frm;
queue.Formatter = frm;
srv.Send("S " + responseQueue);
var loop = NewThreadScheduler.Default.ScheduleLongRunning(cancel =>
{
while (!cancel.IsDisposed)
{
var msg = queue.Receive();
observer.OnNext((T)msg.Body);
}
});
return new CompositeDisposable(
loop,
Disposable.Create(() =>
{
srv.Send("D " + responseQueue);
MessageQueue.Delete(responseQueue);
})
);
});
}
只需NuGet“Rx-Main”来获取位。
为了限制并发性,你可以这样做:
int maxConcurrent = 2;
var query =
FromQueue<Command1>(queue)
.Select(command1 => Observable.Start(() =>
{
Thread.Sleep(1000);
return "id: " + command1.id + ", name: " + command1.name;
}))
.Merge(maxConcurrent);