如何等到matplotlib动画结束?

时间:2015-12-23 09:26:57

标签: python multithreading animation matplotlib

考虑直接从Matplotlib文档中获取的以下代码:

while True: 
  #I have tried any of these 3 commands, without success:  
    pass
    #time.sleep(1)
    #cv2.waitKey(10)

这在我的系统上工作正常。现在,尝试将以下代码附加到上面的代码中:

beforeSend: function (xhr) {
                xhr.setRequestHeader('Content-Type', 'application/json;charset=utf-8');
                xhr.setRequestHeader('Accept', 'application/json');
}

程序会冻结。显然,Matplotlib的“Animation”类在一个单独的线程中运行动画。所以我有以下两个问题:

1)如果进程在一个单独的线程中运行,为什么它会受到后续循环的干扰?

2)如何对python说等到动画结束?

3 个答案:

答案 0 :(得分:3)

对我来说,复制到ipython按预期工作(动画先播放然后播放无限循环)但是当运行脚本时它会冻结。

1)我不确定cpython究竟是如何处理多线程的,特别是当与特定的matplotlib后端结合使用时,它似乎在这里失败了。一种可能性是通过使用

明确说明如何使用线程
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import multiprocessing as mp


fig = plt.figure()   

def f(x, y):
    return np.sin(x) + np.cos(y)

x = np.linspace(0, 2 * np.pi, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)

im = plt.imshow(f(x, y), animated=True)    

def updatefig(*args):
    global x, y
    x += np.pi / 15.
    y += np.pi / 20.
    im.set_array(f(x, y))
    return im,

#A function to set thread number 0 to animate and the rest to loop
def worker(num):
    if num == 0:
        ani = animation.FuncAnimation(fig, updatefig, interval=50, blit=True)
        plt.show()
    else:
        while True: 
            print("in loop")
            pass

    return


# Create two threads
jobs = []
for i in range(2):
    p = mp.Process(target=worker, args=(i,))
    jobs.append(p)
    p.start()

定义了两个线程,并设置一个用于处理动画,一个用于循环。

2)要解决这个问题,正如@Mitesh Shah所建议的那样,您可以使用plt.show(block=True)。对我来说,脚本然后按照预期的方式运行动画,然后循环。完整代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig = plt.figure()   

def f(x, y):
    return np.sin(x) + np.cos(y)

x = np.linspace(0, 2 * np.pi, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)

im = plt.imshow(f(x, y), animated=True)    

def updatefig(*args):
    global x, y
    x += np.pi / 15.
    y += np.pi / 20.
    im.set_array(f(x, y))
    return im,

ani = animation.FuncAnimation(fig, updatefig, interval=50, blit=True)
plt.show(block=True)

while True: 
    print("in loop")
    pass

更新:替代方案是简单地使用交互模式,

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig = plt.figure()   
plt.ion()
plt.show()

def f(x, y):
    return np.sin(x) + np.cos(y)

def updatefig(*args):
    global x, y


x = np.linspace(0, 2 * np.pi, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
im = plt.imshow(f(x, y))    

for i in range(500):

    x += np.pi / 15.
    y += np.pi / 20.
    im.set_array(f(x, y))
    plt.draw()
    plt.pause(0.0000001)

答案 1 :(得分:2)

我们可以在一个单独的线程中运行动画功能。然后启动该线程。创建新线程后,将继续执行 然后我们使用p.join()等待我们先前创建的线程完成执行。一旦执行完成(或由于某种原因终止),代码将继续进行。

此外,matplotlib在交互式Python shell与系统命令行shell中的工作方式不同,以下代码应适用于以下两种情况:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from multiprocessing import Process
import time # optional for testing only
#import cv2 # optional for testing only

fig = plt.figure()   

def f(x, y):
    return np.sin(x) + np.cos(y)

x = np.linspace(0, 2 * np.pi, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)

im = plt.imshow(f(x, y), animated=True)    


def plot_graph(*args):
    def updatefig(*args):
        global x, y
        x += np.pi / 15.
        y += np.pi / 20.
        im.set_array(f(x, y))
        return im,

    ani = animation.FuncAnimation(fig, updatefig, interval=50, blit=True)
    plt.show()

p = Process(target=plot_graph)
p.start()
# Code here computes while the animation is running
for i in range(10):
    time.sleep(1)
    print('Something')

p.join()
print("Animation is over")
# Code here to be computed after animation is over

我希望这有帮助!您可以在此处找到更多信息:Is there a way to detach matplotlib plots so that the computation can continue?

干杯! :)

答案 2 :(得分:2)

感谢Ed Smith和MiteshNinja的帮助,我终于成功找到了一个不仅适用于Ipython控制台,而且适用于Python控制台和命令行的强大方法。此外,它允许完全控制动画过程。代码是自我解释的。

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from multiprocessing import Process
import time # optional for testing only
import matplotlib.animation as animation

# A. First we define some useful tools:

def wait_fig(): 
    # Block the execution of the code until the figure is closed.
    # This works even with multiprocessing.
    if matplotlib.pyplot.isinteractive():
        matplotlib.pyplot.ioff() # this is necessary in mutliprocessing
        matplotlib.pyplot.show(block=True)
        matplotlib.pyplot.ion() # restitute the interractive state
    else:
        matplotlib.pyplot.show(block=True) 

    return    


def wait_anim(anim_flag, refresh_rate = 0.1):    
    #This will be used in synergy with the animation class in the example
    #below, whenever the user want the figure to close automatically just 
    #after the animation has ended.
    #Note: this function uses the controversial event_loop of Matplotlib, but 
    #I see no other way to obtain the desired result.

    while anim_flag[0]: #next code extracted from plt.pause(...)
        backend = plt.rcParams['backend']
        if backend in plt._interactive_bk:
            figManager = plt._pylab_helpers.Gcf.get_active()
            if figManager is not None:
                figManager.canvas.start_event_loop(refresh_rate)  


def draw_fig(fig = None):    
    #Draw the artists of a figure immediately.
    #Note: if you are using this function inside a loop, it should be less time 
    #consuming to set the interactive mode "on" using matplotlib.pyplot.ion()
    #before the loop, event if restituting the previous state after the loop.

    if matplotlib.pyplot.isinteractive():
        if fig is None:
            matplotlib.pyplot.draw()
        else: 
            fig.canvas.draw()            
    else:   
        matplotlib.pyplot.ion() 
        if fig is None:
            matplotlib.pyplot.draw()
        else: 
            fig.canvas.draw() 
        matplotlib.pyplot.ioff() # restitute the interactive state

    matplotlib.pyplot.show(block=False)
    return


def pause_anim(t): #This is taken from plt.pause(...), but without unnecessary 
                   #stuff. Note that the time module should be previously imported.
                   #Again, this use the controversial event_loop of Matplotlib. 
    backend = matplotlib.pyplot.rcParams['backend']
    if backend in matplotlib.pyplot._interactive_bk:
        figManager = matplotlib.pyplot._pylab_helpers.Gcf.get_active()
        if figManager is not None:
            figManager.canvas.start_event_loop(t)
            return
    else: time.sleep(t) 


#--------------------------

# B. Now come the particular functions that will do the job.
def f(x, y):
    return np.sin(x) + np.cos(y)


def plot_graph():
    fig = plt.figure()
    x = np.linspace(0, 2 * np.pi, 120)
    y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
    im = fig.gca().imshow(f(x, y))    
    draw_fig(fig)
    n_frames = 50

    #==============================================    
    #First method - direct animation: This use the start_event_loop, so is 
    #somewhat controversial according to the Matplotlib doc.
    #Uncomment and put the "Second method" below into comments to test.

    '''for i in range(n_frames): # n_frames iterations    
        x += np.pi / 15.
        y += np.pi / 20.
        im.set_array(f(x, y))
        draw_fig(fig)  
        pause_anim(0.015) # plt.pause(0.015) can also be used, but is slower

    wait_fig() # simply suppress this command if you want the figure to close 
               # automatically just after the animation has ended     
    '''    
    #================================================
    #Second method: this uses the Matplotlib prefered animation class.    
    #Put the "first method" above in comments to test it.
    def updatefig(i, fig, im, x, y, anim_flag, n_frames):
        x = x + i * np.pi / 15.
        y = y + i * np.pi / 20.
        im.set_array(f(x, y))        

        if i == n_frames-1:
            anim_flag[0] = False

    anim_flag = [True]    
    animation.FuncAnimation(fig, updatefig, repeat = False, frames = n_frames, 
         interval=50, fargs = (fig, im, x, y, anim_flag, n_frames), blit=False) 
                            #Unfortunately, blit=True seems to causes problems

    wait_fig()  
    #wait_anim(anim_flag) #replace the previous command by this one if you want the 
                     #figure to close automatically just after the animation 
                     #has ended                                                                
    #================================================           
    return

#--------------------------

# C. Using multiprocessing to obtain the desired effects. I believe this 
# method also works with the "threading" module, but I haven't test that.

def main(): # it is important that ALL the code be typed inside 
           # this function, otherwise the program will do weird 
           # things with the Ipython or even the Python console. 
           # Outside of this condition, type nothing but import
           # clauses and function/class definitions.
    if __name__ != '__main__': return                      
    p = Process(target=plot_graph)
    p.start()
    print('hello', flush = True) #just to have something printed here
    p.join() # suppress this command if you want the animation be executed in
             # parallel with the subsequent code
    for i in range(3): # This allows to see if execution takes place after the 
                       #process above, as should be the case because of p.join().
        print('world', flush = True) 
        time.sleep(1)        

main()