我有一个相当复杂的Tensorflow图,我想为了优化目的进行可视化。是否有一个我可以调用的函数,只需保存图形以便在Tensorboard中查看而无需注释变量?
我试过这个:
merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter("/Users/Name/Desktop/tf_logs", session.graph_def)
但没有产生任何产出。这是使用0.6轮。
这似乎是相关的: Graph visualisaton is not showing in tensorboard for seq2seq model
答案 0 :(得分:17)
您也可以将图形转储为GraphDef protobuf并直接在TensorBoard中加载。您可以在不启动会话或运行模型的情况下执行此操作。
## ... create graph ...
>>> graph_def = tf.get_default_graph().as_graph_def()
>>> graphpb_txt = str(graph_def)
>>> with open('graphpb.txt', 'w') as f: f.write(graphpb_txt)
这将输出一个类似于此的文件,具体取决于您的模型的具体情况。
node {
name: "W"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
...
version 1
在TensorBoard中,您可以使用“上传”按钮从磁盘加载它。
答案 1 :(得分:15)
为了提高效率,tf.train.SummaryWriter
以异步方式记录到磁盘。要确保图表显示在日志中,您必须在程序退出之前在编写器上调用close()
或flush()
。
答案 2 :(得分:9)
这对我有用:
graph = tf.Graph()
with graph.as_default():
... build graph (without annotations) ...
writer = tf.summary.FileWriter(logdir='logdir', graph=graph)
writer.flush()
使用" - logdir = logdir /"启动张量板时会自动加载图表。否#34;上传"按钮需要。
答案 3 :(得分:4)
为清楚起见,这就是我使用.flush()
方法并解决问题的方法:
使用以下命令初始化编写器:
writer = tf.train.SummaryWriter("/home/rob/Dropbox/ConvNets/tf/log_tb", sess.graph_def)
并使用编写器:
writer.add_summary(summary_str, i)
writer.flush()
答案 4 :(得分:0)
除此以外,对我没有任何帮助
package app.shakil.com.dailyexpense.Models;
public class ExpenseModel {
private int id;
private String title;
private String description;
private String date;
private int amount;
private String currency;
public ExpenseModel(){
}
public ExpenseModel(String title,String description,String date,int amount,String currency){
this.title=title;
this.description=description;
this.date=date;
this.amount=amount;
this.currency=currency;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
public String getDescription() {
return description;
}
public void setDescription(String description) {
this.description = description;
}
public String getDate() {
return date;
}
public void setDate(String date) {
this.date = date;
}
public int getAmount() {
return amount;
}
public void setAmount(int amount) {
this.amount = amount;
}
public String getCurrency() {
return currency;
}
public void setCurrency(String currency) {
this.currency = currency;
}
}
然后使用TB有效
# Helper for Converting Frozen graph from Disk to TF serving compatible Model
def get_graph_def_from_file(graph_filepath):
tf.reset_default_graph()
with ops.Graph().as_default():
with tf.gfile.GFile(graph_filepath, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def
#let us get the output nodes from the graph
graph_def =get_graph_def_from_file('/coding/ssd_inception_v2_coco_2018_01_28/frozen_inference_graph.pb')
with tf.Session(graph=tf.Graph()) as session:
tf.import_graph_def(graph_def, name='')
writer = tf.summary.FileWriter(logdir='/coding/log_tb/1', graph=session.graph)
writer.flush()