我有以下数据集:
sample.data <- data.frame(Step = c(1,2,3,4,1,2,1,2,3,1,1),
Case = c(1,1,1,1,2,2,3,3,3,4,5),
Decision = c("Referred","Referred","Referred","Approved","Referred","Declined","Referred","Referred","Declined","Approved","Declined"))
sample.data
Step Case Decision
1 1 1 Referred
2 2 1 Referred
3 3 1 Referred
4 4 1 Approved
5 1 2 Referred
6 2 2 Declined
7 1 3 Referred
8 2 3 Referred
9 3 3 Declined
10 1 4 Approved
11 1 5 Declined
在R中是否可以将其转换为宽表格格式,并在标题上做出决定,每个单元格的值为出现次数,例如:
Case Referred Approved Declined
1 3 1 0
2 1 0 1
3 2 0 1
4 0 1 0
5 0 0 1
答案 0 :(得分:13)
dcast
- 包的reshape2
函数中的聚合参数默认为length
(= count)。在data.table
- 包中,实现了dcast
函数的改进版本。所以在你的情况下,这将是:
library('reshape2') # or library('data.table')
newdf <- dcast(sample.data, Case ~ Decision)
或明确使用参数:
newdf <- dcast(sample.data, Case ~ Decision,
value.var = "Decision", fun.aggregate = length)
这给出了以下数据帧:
> newdf
Case Approved Declined Referred
1 1 1 0 3
2 2 0 1 1
3 3 0 1 2
4 4 1 0 0
5 5 0 1 0
答案 1 :(得分:9)
您可以使用简单的table()
语句完成此操作。您可以使用设置因子级别来获得您想要的响应。
sample.data$Decision <- factor(x = sample.data$Decision,
levels = c("Referred","Approved","Declined"))
table(Case = sample.data$Case,sample.data$Decision)
Case Referred Approved Declined
1 3 1 0
2 1 0 1
3 2 0 1
4 0 1 0
5 0 0 1
答案 2 :(得分:5)
这是 dplyr + tidyr 方法:
if (!require("pacman")) install.packages("pacman")
pacman::p_load(dplyr, tidyr)
sample.data %>%
count(Case, Decision) %>%
spread(Decision, n, fill = 0)
## Case Approved Declined Referred
## (dbl) (dbl) (dbl) (dbl)
## 1 1 1 0 3
## 2 2 0 1 1
## 3 3 0 1 2
## 4 4 1 0 0
## 5 5 0 1 0
答案 3 :(得分:3)
我们可以使用base R
xtabs
xtabs(Step~Case+Decision, transform(sample.data, Step=1))
# Decision
# Case Approved Declined Referred
# 1 1 0 3
# 2 0 1 1
# 3 0 1 2
# 4 1 0 0
# 5 0 1 0