我希望有人可以帮助我: 我试图实现神经网络来查找数据集群,这些数据集呈现为2D集群。我试图遵循wikipedia中描述的标准算法:我寻找每个数据点的最小距离,并更新该神经元朝向数据点的权重。当总距离足够小时,我就停止这样做了。
我的结果是找到大多数聚类,但在视图上是错误的,虽然它计算了一个永久距离但它不再收敛。我的错误在哪里?
typedef struct{
double x;
double y;
}Data;
typedef struct{
double x;
double y;
}Neuron;
typedef struct{
size_t numNeurons;
Neuron* neurons;
}Network;
int main(void){
srand(time(NULL));
Data trainingData[1000];
size_t sizeTrainingData = 0;
size_t sizeClasses = 0;
Network network;
getData(trainingData, &sizeTrainingData, &sizeClasses);
initializeNetwork(&network, sizeClasses);
normalizeData(trainingData, sizeTrainingData);
train(&network, trainingData, sizeTrainingData);
return 0;
}
void train(Network* network, Data trainingData[], size_t sizeTrainingData){
for(int epoch=0; epoch<TRAINING_EPOCHS; ++epoch){
double learningRate = getLearningRate(epoch);
double totalDistance = 0;
for(int i=0; i<sizeTrainingData; ++i){
Data currentData = trainingData[i];
int winningNeuron = 0;
totalDistance += findWinningNeuron(network, currentData, &winningNeuron);
//update weight
network->neurons[i].x += learningRate * (currentData.x - network->neurons[i].x);
network->neurons[i].y += learningRate * (currentData.y - network->neurons[i].y);
}
if(totalDistance<MIN_TOTAL_DISTANCE) break;
}
}
double getLearningRate(int epoch){
return LEARNING_RATE * exp(-log(LEARNING_RATE/LEARNING_RATE_MIN_VALUE)*((double)epoch/TRAINING_EPOCHS));
}
double findWinningNeuron(Network* network, Data data, int* winningNeuron){
double smallestDistance = 9999;
for(unsigned int currentNeuronIndex=0; currentNeuronIndex<network->numNeurons; ++currentNeuronIndex){
Neuron neuron = network->neurons[currentNeuronIndex];
double distance = sqrt(pow(data.x-neuron.x,2)+pow(data.y-neuron.y,2));
if(distance<smallestDistance){
smallestDistance = distance;
*winningNeuron = currentNeuronIndex;
}
}
return smallestDistance;
}
initializeNetwork(...)
启动所有具有-1和1范围内随机权重的神经元。
normalizeData(...)
以某种方式规范化,因此最大值为1.
示例:
如果我向网络提供大约50个(规范化的)数据点,这些数据点分为3个群集,剩余的totaldistance
将保持在 7.3 。当我检查神经元的位置时,它应该代表群集的中心,两个是完美的,一个位于群集的边界。算法不应该更多地移动到中心吗?我重复了几次算法,输出总是相似的(完全相同的错误的点)
答案 0 :(得分:1)
你的代码看起来不像LVQ,特别是你没有使用过获胜的神经元,而你只应移动这个
void train(Network* network, Data trainingData[], size_t sizeTrainingData){
for(int epoch=0; epoch<TRAINING_EPOCHS; ++epoch){
double learningRate = getLearningRate(epoch);
double totalDistance = 0;
for(int i=0; i<sizeTrainingData; ++i){
Data currentData = trainingData[i];
int winningNeuron = 0;
totalDistance += findWinningNeuron(network, currentData, &winningNeuron);
//update weight
network->neurons[i].x += learningRate * (currentData.x - network->neurons[i].x);
network->neurons[i].y += learningRate * (currentData.y - network->neurons[i].y);
}
if(totalDistance<MIN_TOTAL_DISTANCE) break;
}
}
您要移动的神经元位于winningNeuron
但您更新i
神经元i
实际迭代训练样本,我很惊讶您不会跌倒关闭你的记忆(网络 - &gt;神经元应该小于sizeTrainingData)。我想你的意思是
void train(Network* network, Data trainingData[], size_t sizeTrainingData){
for(int epoch=0; epoch<TRAINING_EPOCHS; ++epoch){
double learningRate = getLearningRate(epoch);
double totalDistance = 0;
for(int i=0; i<sizeTrainingData; ++i){
Data currentData = trainingData[i];
int winningNeuron = 0;
totalDistance += findWinningNeuron(network, currentData, &winningNeuron);
//update weight
network->neurons[winningNeuron].x += learningRate * (currentData.x - network->neurons[winningNeuron].x);
network->neurons[winningNeuron].y += learningRate * (currentData.y - network->neurons[winningNeuron].y);
}
if(totalDistance<MIN_TOTAL_DISTANCE) break;
}
}