通常,并不十分清楚并行流如何将输入分成块以及块连接的顺序。有没有办法可视化任何流源的整个过程,以更好地了解正在发生的事情?假设我创建了一个这样的流:
Stream<Integer> stream = IntStream.range(0, 100).boxed().parallel();
我希望看到一些树状的结构:
[0..99]
_____/ \_____
| |
[0..49] [50..99]
__/ \__ __/ \__
| | | |
[0..24] [25..49] [50..74] [75..99]
这意味着整个输入范围[0..99]
被分为[0..49]
和[50..99]
范围,而这些范围又会进一步分割。当然这样的图应该反映Stream API的实际工作,所以如果我用这样的流执行一些实际操作,分割应该以相同的方式执行。
答案 0 :(得分:18)
当前流API实现使用收集器组合器将中间结果与先前拆分的方式完全相同。此外,拆分策略还取决于源和公共池并行度级别,但不依赖于所使用的精确还原操作(reduce
,collect
,forEach
,count
的操作相同等)。依靠这一点,创建可视化收集器并不是很困难:
public static Collector<Object, ?, List<String>> parallelVisualize() {
class Range {
private String first, last;
private Range left, right;
void accept(Object obj) {
if (first == null)
first = obj.toString();
else
last = obj.toString();
}
Range combine(Range that) {
Range p = new Range();
p.first = first == null ? that.first : first;
p.last = Stream
.of(that.last, that.first, this.last, this.first)
.filter(Objects::nonNull).findFirst().orElse(null);
p.left = this;
p.right = that;
return p;
}
String pad(String s, int left, int len) {
if (len == s.length())
return s;
char[] result = new char[len];
Arrays.fill(result, ' ');
s.getChars(0, s.length(), result, left);
return new String(result);
}
public List<String> finish() {
String cur = toString();
if (left == null) {
return Collections.singletonList(cur);
}
List<String> l = left.finish();
List<String> r = right.finish();
int len1 = l.get(0).length();
int len2 = r.get(0).length();
int totalLen = len1 + len2 + 1;
int leftAdd = 0;
if (cur.length() < totalLen) {
cur = pad(cur, (totalLen - cur.length()) / 2, totalLen);
} else {
leftAdd = (cur.length() - totalLen) / 2;
totalLen = cur.length();
}
List<String> result = new ArrayList<>();
result.add(cur);
char[] dashes = new char[totalLen];
Arrays.fill(dashes, ' ');
Arrays.fill(dashes, len1 / 2 + leftAdd + 1, len1 + len2 / 2 + 1
+ leftAdd, '_');
int mid = totalLen / 2;
dashes[mid] = '/';
dashes[mid + 1] = '\\';
result.add(new String(dashes));
Arrays.fill(dashes, ' ');
dashes[len1 / 2 + leftAdd] = '|';
dashes[len1 + len2 / 2 + 1 + leftAdd] = '|';
result.add(new String(dashes));
int maxSize = Math.max(l.size(), r.size());
for (int i = 0; i < maxSize; i++) {
String lstr = l.size() > i ? l.get(i) : String.format("%"
+ len1 + "s", "");
String rstr = r.size() > i ? r.get(i) : String.format("%"
+ len2 + "s", "");
result.add(pad(lstr + " " + rstr, leftAdd, totalLen));
}
return result;
}
public String toString() {
if (first == null)
return "(empty)";
else if (last == null)
return "[" + first + "]";
return "[" + first + ".." + last + "]";
}
}
return Collector.of(Range::new, Range::accept, Range::combine,
Range::finish);
}
以下是使用4核机器使用此收集器获得的一些有趣结果(结果将因机器上的availableProcessors()
数不同而不同。)
拆分简单范围:
IntStream.range(0, 100)
.boxed().parallel().collect(parallelVisualize())
.forEach(System.out::println);
甚至分成16个任务:
[0..99]
___________________________________/\________________________________
| |
[0..49] [50..99]
_________________/\______________ _________________/\________________
| | | |
[0..24] [25..49] [50..74] [75..99]
________/\_____ ________/\_______ ________/\_______ ________/\_______
| | | | | | | |
[0..11] [12..24] [25..36] [37..49] [50..61] [62..74] [75..86] [87..99]
___/\_ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___
| | | | | | | | | | | | | | | |
[0..5] [6..11] [12..17] [18..24] [25..30] [31..36] [37..42] [43..49] [50..55] [56..61] [62..67] [68..74] [75..80] [81..86] [87..92] [93..99]
拆分两个流连接:
IntStream
.concat(IntStream.range(0, 10), IntStream.range(10, 100))
.boxed().parallel().collect(parallelVisualize())
.forEach(System.out::println);
正如您所看到的,首先拆分取消连接流:
[0..99]
_______________________________________________________________________/\_____
| |
[0..9] [10..99]
__/\__ ___________________________________/\__________________________________
| | | |
[0..4] [5..9] [10..54] [55..99]
_________________/\________________ _________________/\________________
| | | |
[10..31] [32..54] [55..76] [77..99]
________/\_______ ________/\_______ ________/\_______ ________/\_______
| | | | | | | |
[10..20] [21..31] [32..42] [43..54] [55..65] [66..76] [77..87] [88..99]
___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___
| | | | | | | | | | | | | | | |
[10..14] [15..20] [21..25] [26..31] [32..36] [37..42] [43..48] [49..54] [55..59] [60..65] [66..70] [71..76] [77..81] [82..87] [88..93] [94..99]
分割两个流连接,其中在连接之前执行了中间操作(boxed()):
Stream.concat(IntStream.range(0, 50).boxed().parallel(), IntStream.range(50, 100).boxed())
.collect(parallelVisualize())
.forEach(System.out::println);
如果其中一个输入流在连接之前没有变为并行模式,它就会拒绝分割:
[0..99]
___/\_________________________________
| |
[0..49] [50..99]
_________________/\______________
| |
[0..24] [25..49]
________/\_____ ________/\_______
| | | |
[0..11] [12..24] [25..36] [37..49]
___/\_ ___/\___ ___/\___ ___/\___
| | | | | | | |
[0..5] [6..11] [12..17] [18..24] [25..30] [31..36] [37..42] [43..49]
拆分平面图:
Stream.of(0, 50)
.flatMap(start -> IntStream.range(start, start+50).boxed().parallel())
.parallel().collect(parallelVisualize())
.forEach(System.out::println);
平面图从不在嵌套流内并行化:
[0..99]
____/\__
| |
[0..49] [50..99]
来自7000个元素的未知大小迭代器的流(有关上下文,请参阅this answer):
StreamSupport
.stream(Spliterators.spliteratorUnknownSize(
IntStream.range(0, 7000).iterator(),
Spliterator.ORDERED), true)
.collect(parallelVisualize()).forEach(System.out::println);
分裂非常糟糕,每个人都在等待最大的部分[3072..6143]:
[0..6999]
_______________________/\___
| |
[0..1023] [1024..6999]
________________/\____
| |
[1024..3071] [3072..6999]
_________/\_____
| |
[3072..6143] [6144..6999]
___/\____
| |
[6144..6999] (empty)
已知大小的迭代器来源:
StreamSupport
.stream(Spliterators.spliterator(IntStream.range(0, 7000)
.iterator(), 7000, Spliterator.ORDERED), true)
.collect(parallelVisualize()).forEach(System.out::println);
提供尺寸可以更好地解锁进一步的分裂:
[0..6999]
______________________________________________________________________________________________/\________
| |
[0..1023] [1024..6999]
_____/\__ ____________________________________________________________________/\________________________
| | | |
[0..511] [512..1023] [1024..3071] [3072..6999]
____________/\___________ ________________/\__________________________________________________
| | | |
[1024..2047] [2048..3071] [3072..6143] [6144..6999]
_____/\_____ _____/\_____ _________________________/\________________________ ___/\___________
| | | | | | | |
[1024..1535] [1536..2047] [2048..2559] [2560..3071] [3072..4607] [4608..6143] [6144..6999] (empty)
____________/\___________ ____________/\___________ _____/\_____
| | | | | |
[3072..3839] [3840..4607] [4608..5375] [5376..6143] [6144..6571] [6572..6999]
_____/\_____ _____/\_____ _____/\_____ _____/\_____
| | | | | | | |
[3072..3455] [3456..3839] [3840..4223] [4224..4607] [4608..4991] [4992..5375] [5376..5759] [5760..6143]
这种收集器的进一步改进可以生成图形图像(如svg),跟踪处理每个节点的线程,显示每个组的元素数量等等。如果你愿意,可以使用它。
答案 1 :(得分:10)
我希望使用一个解决方案来增强Tagir’s great answer来监控源端的拆分,甚至是中间操作(当前流API实现强加了一些限制):
public static <E> Stream<E> proxy(Stream<E> src) {
Class<Stream<E>> sClass=(Class)Stream.class;
Class<Spliterator<E>> spClass=(Class)Spliterator.class;
return proxy(src, sClass, spClass, StreamSupport::stream);
}
public static IntStream proxy(IntStream src) {
return proxy(src, IntStream.class, Spliterator.OfInt.class, StreamSupport::intStream);
}
public static LongStream proxy(LongStream src) {
return proxy(src, LongStream.class, Spliterator.OfLong.class, StreamSupport::longStream);
}
public static DoubleStream proxy(DoubleStream src) {
return proxy(src, DoubleStream.class, Spliterator.OfDouble.class, StreamSupport::doubleStream);
}
static final Object EMPTY=new StringBuilder("empty");
static <E,S extends BaseStream<E,S>, Sp extends Spliterator<E>> S proxy(
S src, Class<S> sc, Class<Sp> spc, BiFunction<Sp,Boolean,S> f) {
final class Node<T> implements InvocationHandler,Runnable,
Consumer<Object>, IntConsumer, LongConsumer, DoubleConsumer {
final Class<? extends Spliterator> type;
Spliterator<T> src;
Object first=EMPTY, last=EMPTY;
Node<T> left, right;
Object currConsumer;
public Node(Spliterator<T> src, Class<? extends Spliterator> type) {
this.src = src;
this.type=type;
}
private void value(Object t) {
if(first==EMPTY) first=t;
last=t;
}
public void accept(Object t) {
value(t); ((Consumer)currConsumer).accept(t);
}
public void accept(int t) {
value(t); ((IntConsumer)currConsumer).accept(t);
}
public void accept(long t) {
value(t); ((LongConsumer)currConsumer).accept(t);
}
public void accept(double t) {
value(t); ((DoubleConsumer)currConsumer).accept(t);
}
public void run() {
System.out.println();
finish().forEach(System.out::println);
}
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
Node<T> curr=this; while(curr.right!=null) curr=curr.right;
if(method.getName().equals("tryAdvance")||method.getName().equals("forEachRemaining")) {
curr.currConsumer=args[0];
args[0]=curr;
}
if(method.getName().equals("trySplit")) {
Spliterator s=curr.src.trySplit();
if(s==null) return null;
Node<T> pfx=new Node<>(s, type);
pfx.left=curr.left; curr.left=pfx;
curr.right=new Node<>(curr.src, type);
src=null;
return pfx.create();
}
return method.invoke(curr.src, args);
}
Object create() {
return Proxy.newProxyInstance(null, new Class<?>[]{type}, this);
}
String pad(String s, int left, int len) {
if (len == s.length())
return s;
char[] result = new char[len];
Arrays.fill(result, ' ');
s.getChars(0, s.length(), result, left);
return new String(result);
}
public List<String> finish() {
String cur = toString();
if (left == null) {
return Collections.singletonList(cur);
}
List<String> l = left.finish();
List<String> r = right.finish();
int len1 = l.get(0).length();
int len2 = r.get(0).length();
int totalLen = len1 + len2 + 1;
int leftAdd = 0;
if (cur.length() < totalLen) {
cur = pad(cur, (totalLen - cur.length()) / 2, totalLen);
} else {
leftAdd = (cur.length() - totalLen) / 2;
totalLen = cur.length();
}
List<String> result = new ArrayList<>();
result.add(cur);
char[] dashes = new char[totalLen];
Arrays.fill(dashes, ' ');
Arrays.fill(dashes, len1 / 2 + leftAdd + 1, len1 + len2 / 2 + 1
+ leftAdd, '_');
int mid = totalLen / 2;
dashes[mid] = '/';
dashes[mid + 1] = '\\';
result.add(new String(dashes));
Arrays.fill(dashes, ' ');
dashes[len1 / 2 + leftAdd] = '|';
dashes[len1 + len2 / 2 + 1 + leftAdd] = '|';
result.add(new String(dashes));
int maxSize = Math.max(l.size(), r.size());
for (int i = 0; i < maxSize; i++) {
String lstr = l.size() > i ? l.get(i) : String.format("%"
+ len1 + "s", "");
String rstr = r.size() > i ? r.get(i) : String.format("%"
+ len2 + "s", "");
result.add(pad(lstr + " " + rstr, leftAdd, totalLen));
}
return result;
}
private Object first() {
if(left==null) return first;
Object o=left.first();
if(o==EMPTY) o=right.first();
return o;
}
private Object last() {
if(right==null) return last;
Object o=right.last();
if(o==EMPTY) o=left.last();
return o;
}
public String toString() {
Object o=first(), p=last();
return o==EMPTY? "(empty)": "["+o+(o!=p? ".."+p+']': "]");
}
}
Node<E> n=new Node<>(src.spliterator(), spc);
Sp sp=(Sp)Proxy.newProxyInstance(null, new Class<?>[]{n.type}, n);
return f.apply(sp, true).onClose(n);
}
它允许使用代理包装spliterator,该代理将监视拆分操作和遇到的对象。块处理的逻辑类似于Tagir,事实上,我复制了他的结果打印例程。
您可以传入流的源或已附加相同操作的流。 (在后一种情况下,您应尽早将.parallel()
应用于流)。正如Tagir所解释的,在大多数情况下,拆分行为取决于源和配置的并行性,因此,在大多数情况下,监视中间状态可能会更改值,但不会更改已处理的块:
try(IntStream is=proxy(IntStream.range(0, 100).parallel())) {
is.filter(i -> i/20%2==0)
.mapToObj(ix->"\""+ix+'"')
.forEach(s->{});
}
将打印
[0..99]
___________________________________/\________________________________
| |
[0..49] [50..99]
_________________/\______________ _________________/\________________
| | | |
[0..24] [25..49] [50..74] [75..99]
________/\_____ ________/\_______ ________/\_______ ________/\_______
| | | | | | | |
[0..11] [12..24] [25..36] [37..49] [50..61] [62..74] [75..86] [87..99]
___/\_ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___
| | | | | | | | | | | | | | | |
[0..5] [6..11] [12..17] [18..24] [25..30] [31..36] [37..42] [43..49] [50..55] [56..61] [62..67] [68..74] [75..80] [81..86] [87..92] [93..99]
,而
try(Stream<String> s=proxy(IntStream.range(0, 100).parallel().filter(i -> i/20%2==0)
.mapToObj(ix->"\""+ix+'"'))) {
s.forEach(str->{});
}
将打印
["0".."99"]
___________________________________________/\___________________________________________
| |
["0".."49"] ["50".."99"]
____________________/\______________________ ______________________/\___________________
| | | |
["0".."19"] ["40".."49"] ["50".."59"] ["80".."99"]
____________/\_________ ____________/\______ _______/\___________ ____________/\________
| | | | | | | |
["0".."11"] ["12".."19"] (empty) ["40".."49"] ["50".."59"] (empty) ["80".."86"] ["87".."99"]
_____/\___ _____/\_____ ___/\__ _____/\_____ _____/\_____ ___/\__ _____/\__ _____/\_____
| | | | | | | | | | | | | | | |
["0".."5"] ["6".."11"] ["12".."17"] ["18".."19"] (empty) (empty) ["40".."42"] ["43".."49"] ["50".."55"] ["56".."59"] (empty) (empty) ["80"] ["81".."86"] ["87".."92"] ["93".."99"]
正如我们在这里看到的,我们正在监视.filter(…).mapToObj(…)
的结果,但是块明确地由源确定,可能会根据过滤器的条件在下游生成空块。
请注意,我们可以将源监控与Tagir的收集器监控结合起来:
try(IntStream s=proxy(IntStream.range(0, 100))) {
s.parallel().filter(i -> i/20%2==0)
.boxed().collect(parallelVisualize())
.forEach(System.out::println);
}
这将打印(请注意首先打印collect
输出):
[0..99]
________________________________/\_______________________________
| |
[0..49] [50..99]
________________/\______________ _______________/\_______________
| | | |
[0..19] [40..49] [50..59] [80..99]
________/\_____ ________/\______ _______/\_______ ________/\_____
| | | | | | | |
[0..11] [12..19] (empty) [40..49] [50..59] (empty) [80..86] [87..99]
___/\_ ___/\___ ___/\__ ___/\___ ___/\___ ___/\__ ___/\_ ___/\___
| | | | | | | | | | | | | | | |
[0..5] [6..11] [12..17] [18..19] (empty) (empty) [40..42] [43..49] [50..55] [56..59] (empty) (empty) [80] [81..86] [87..92] [93..99]
[0..99]
___________________________________/\________________________________
| |
[0..49] [50..99]
_________________/\______________ _________________/\________________
| | | |
[0..24] [25..49] [50..74] [75..99]
________/\_____ ________/\_______ ________/\_______ ________/\_______
| | | | | | | |
[0..11] [12..24] [25..36] [37..49] [50..61] [62..74] [75..86] [87..99]
___/\_ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___ ___/\___
| | | | | | | | | | | | | | | |
[0..5] [6..11] [12..17] [18..24] [25..30] [31..36] [37..42] [43..49] [50..55] [56..61] [62..67] [68..74] [75..80] [81..86] [87..92] [93..99]
我们可以清楚地看到处理的块如何匹配,但是在过滤之后,一些块具有较少的元素,其中一些是完全空的。
这是展示的地方,两种监测方式可以产生显着差异:
try(DoubleStream is=proxy(DoubleStream.iterate(0, i->i+1)).parallel().limit(100)) {
is.boxed()
.collect(parallelVisualize())
.forEach(System.out::println);
}
[0.0..99.0]
___________________________________________________/\________________________________________________
| |
[0.0..49.0] [50.0..99.0]
_________________________/\______________________ _________________________/\________________________
| | | |
[0.0..24.0] [25.0..49.0] [50.0..74.0] [75.0..99.0]
____________/\_________ ____________/\___________ ____________/\___________ ____________/\___________
| | | | | | | |
[0.0..11.0] [12.0..24.0] [25.0..36.0] [37.0..49.0] [50.0..61.0] [62.0..74.0] [75.0..86.0] [87.0..99.0]
_____/\___ _____/\_____ _____/\_____ _____/\_____ _____/\_____ _____/\_____ _____/\_____ _____/\_____
| | | | | | | | | | | | | | | |
[0.0..5.0] [6.0..11.0] [12.0..17.0] [18.0..24.0] [25.0..30.0] [31.0..36.0] [37.0..42.0] [43.0..49.0] [50.0..55.0] [56.0..61.0] [62.0..67.0] [68.0..74.0] [75.0..80.0] [81.0..86.0] [87.0..92.0] [93.0..99.0]
[0.0..10239.0]
_____________________________/\_____
| |
[0.0..1023.0] [1024.0..10239.0]
____________________/\_______
| |
[1024.0..3071.0] [3072.0..10239.0]
____________/\______
| |
[3072.0..6143.0] [6144.0..10239.0]
___/\_______
| |
[6144.0..10239.0] (empty)
这表明what Tagir already explained,未知大小的流分裂得很差,甚至limit(…)
提供了良好估计的可能性(事实上,无限+限制在理论上是可预测的),实现没有利用它。
使用批量大小1024
将源拆分为块,每次拆分后增加1024
,创建超出limit
强制范围的块。我们还可以看到每次分离前缀的方式。
但是当我们查看终端分割输出时,我们可以看到这些多余的块之间已经被丢弃,并且第一个块的另一个分裂发生了。由于这个块是由第一个拆分中的默认实现填充的中间数组的后端,我们在源代码处没有注意到它,但我们可以在终端操作中看到该数组已被拆分(不出所料)很平衡
所以我们需要两种监控方式来全面了解......