Diffie-Hellman(来自RC4)与来自Python的Wincrypt

时间:2015-12-19 01:50:54

标签: python c++ encryption pycrypto cryptoapi

我目前正在开发一个用C ++编写的项目,该项目利用CryptoAPI执行Diffie-Hellman密钥交换。由于我得到的最终RC4会话密钥不能用于加密Python中的相同文本(使用pycrypto),因此我遇到了一些麻烦。

执行Diffie-Hellman密钥交换的C ++代码取自msdn,但此处包含后代:

#include <tchar.h>
#include <windows.h>
#include <wincrypt.h>
#pragma comment(lib, "crypt32.lib")

// The key size, in bits.
#define DHKEYSIZE 512

// Prime in little-endian format.
static const BYTE g_rgbPrime[] = 
{
    0x91, 0x02, 0xc8, 0x31, 0xee, 0x36, 0x07, 0xec, 
    0xc2, 0x24, 0x37, 0xf8, 0xfb, 0x3d, 0x69, 0x49, 
    0xac, 0x7a, 0xab, 0x32, 0xac, 0xad, 0xe9, 0xc2, 
    0xaf, 0x0e, 0x21, 0xb7, 0xc5, 0x2f, 0x76, 0xd0, 
    0xe5, 0x82, 0x78, 0x0d, 0x4f, 0x32, 0xb8, 0xcb,
    0xf7, 0x0c, 0x8d, 0xfb, 0x3a, 0xd8, 0xc0, 0xea, 
    0xcb, 0x69, 0x68, 0xb0, 0x9b, 0x75, 0x25, 0x3d,
    0xaa, 0x76, 0x22, 0x49, 0x94, 0xa4, 0xf2, 0x8d 
};

// Generator in little-endian format.
static BYTE g_rgbGenerator[] = 
{
    0x02, 0x88, 0xd7, 0xe6, 0x53, 0xaf, 0x72, 0xc5,
    0x8c, 0x08, 0x4b, 0x46, 0x6f, 0x9f, 0x2e, 0xc4,
    0x9c, 0x5c, 0x92, 0x21, 0x95, 0xb7, 0xe5, 0x58, 
    0xbf, 0xba, 0x24, 0xfa, 0xe5, 0x9d, 0xcb, 0x71, 
    0x2e, 0x2c, 0xce, 0x99, 0xf3, 0x10, 0xff, 0x3b,
    0xcb, 0xef, 0x6c, 0x95, 0x22, 0x55, 0x9d, 0x29,
    0x00, 0xb5, 0x4c, 0x5b, 0xa5, 0x63, 0x31, 0x41,
    0x13, 0x0a, 0xea, 0x39, 0x78, 0x02, 0x6d, 0x62
};

BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04,    0x05, 0x06, 0x07, 0x08};

int _tmain(int argc, _TCHAR* argv[])
{
    UNREFERENCED_PARAMETER(argc);
    UNREFERENCED_PARAMETER(argv);

    BOOL fReturn;
    HCRYPTPROV hProvParty1 = NULL; 
    HCRYPTPROV hProvParty2 = NULL; 
    DATA_BLOB P;
    DATA_BLOB G;
    HCRYPTKEY hPrivateKey1 = NULL;
    HCRYPTKEY hPrivateKey2 = NULL;
    PBYTE pbKeyBlob1 = NULL;
    PBYTE pbKeyBlob2 = NULL;
    HCRYPTKEY hSessionKey1 = NULL;
    HCRYPTKEY hSessionKey2 = NULL;
    PBYTE pbData = NULL;

    /************************
    Construct data BLOBs for the prime and generator. The P and G 
    values, represented by the g_rgbPrime and g_rgbGenerator arrays 
    respectively, are shared values that have been agreed to by both 
    parties.
    ************************/
    P.cbData = DHKEYSIZE/8;
    P.pbData = (BYTE*)(g_rgbPrime);

    G.cbData = DHKEYSIZE/8;
    G.pbData = (BYTE*)(g_rgbGenerator);

    /************************
    Create the private Diffie-Hellman key for party 1. 
    ************************/
    // Acquire a provider handle for party 1.
    fReturn = CryptAcquireContext(
        &hProvParty1, 
        NULL,
        MS_ENH_DSS_DH_PROV,
        PROV_DSS_DH, 
        CRYPT_VERIFYCONTEXT);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Create an ephemeral private key for party 1.
    fReturn = CryptGenKey(
        hProvParty1, 
        CALG_DH_EPHEM, 
        DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
        &hPrivateKey1);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Set the prime for party 1's private key.
    fReturn = CryptSetKeyParam(
        hPrivateKey1,
        KP_P,
        (PBYTE)&P,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Set the generator for party 1's private key.
    fReturn = CryptSetKeyParam(
        hPrivateKey1,
        KP_G,
        (PBYTE)&G,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Generate the secret values for party 1's private key.
    fReturn = CryptSetKeyParam(
        hPrivateKey1,
        KP_X,
        NULL,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Create the private Diffie-Hellman key for party 2. 
    ************************/
    // Acquire a provider handle for party 2.
    fReturn = CryptAcquireContext(
        &hProvParty2, 
        NULL,
        MS_ENH_DSS_DH_PROV,
        PROV_DSS_DH, 
        CRYPT_VERIFYCONTEXT);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Create an ephemeral private key for party 2.
    fReturn = CryptGenKey(
        hProvParty2, 
        CALG_DH_EPHEM, 
        DHKEYSIZE << 16 | CRYPT_EXPORTABLE | CRYPT_PREGEN,
        &hPrivateKey2);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Set the prime for party 2's private key.
    fReturn = CryptSetKeyParam(
        hPrivateKey2,
        KP_P,
        (PBYTE)&P,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Set the generator for party 2's private key.
    fReturn = CryptSetKeyParam(
        hPrivateKey2,
        KP_G,
        (PBYTE)&G,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Generate the secret values for party 2's private key.
    fReturn = CryptSetKeyParam(
        hPrivateKey2,
        KP_X,
        NULL,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Export Party 1's public key.
    ************************/
    // Public key value, (G^X) mod P is calculated.
    DWORD dwDataLen1;

    // Get the size for the key BLOB.
    fReturn = CryptExportKey(
        hPrivateKey1,
        NULL,
        PUBLICKEYBLOB,
        0,
        NULL,
        &dwDataLen1);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Allocate the memory for the key BLOB.
    if(!(pbKeyBlob1 = (PBYTE)malloc(dwDataLen1)))
    { 
        goto ErrorExit;
    }

    // Get the key BLOB.
    fReturn = CryptExportKey(
        hPrivateKey1,
        0,
        PUBLICKEYBLOB,
        0,
        pbKeyBlob1,
        &dwDataLen1);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Export Party 2's public key.
    ************************/
    // Public key value, (G^X) mod P is calculated.
    DWORD dwDataLen2;

    // Get the size for the key BLOB.
    fReturn = CryptExportKey(
        hPrivateKey2,
        NULL,
        PUBLICKEYBLOB,
        0,
        NULL,
        &dwDataLen2);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Allocate the memory for the key BLOB.
    if(!(pbKeyBlob2 = (PBYTE)malloc(dwDataLen2)))
    { 
        goto ErrorExit;
    }

    // Get the key BLOB.
    fReturn = CryptExportKey(
        hPrivateKey2,
        0,
        PUBLICKEYBLOB,
        0,
        pbKeyBlob2,
        &dwDataLen2);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Party 1 imports party 2's public key.
    The imported key will contain the new shared secret 
    key (Y^X) mod P. 
    ************************/
    fReturn = CryptImportKey(
        hProvParty1,
        pbKeyBlob2,
        dwDataLen2,
        hPrivateKey1,
        0,
        &hSessionKey2);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Party 2 imports party 1's public key.
    The imported key will contain the new shared secret 
    key (Y^X) mod P. 
    ************************/
    fReturn = CryptImportKey(
        hProvParty2,
        pbKeyBlob1,
        dwDataLen1,
        hPrivateKey2,
        0,
        &hSessionKey1);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Convert the agreed keys to symmetric keys. They are currently of 
    the form CALG_AGREEDKEY_ANY. Convert them to CALG_RC4.
    ************************/
    ALG_ID Algid = CALG_RC4;

    // Enable the party 1 public session key for use by setting the 
    // ALGID.
    fReturn = CryptSetKeyParam(
        hSessionKey1,
        KP_ALGID,
        (PBYTE)&Algid,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Enable the party 2 public session key for use by setting the 
    // ALGID.
    fReturn = CryptSetKeyParam(
        hSessionKey2,
        KP_ALGID,
        (PBYTE)&Algid,
        0);
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Encrypt some data with party 1's session key. 
    ************************/
    // Get the size.
    DWORD dwLength = sizeof(g_rgbData);
    fReturn = CryptEncrypt(
        hSessionKey1, 
        0, 
        TRUE,
        0, 
        NULL, 
        &dwLength,
        sizeof(g_rgbData));
    if(!fReturn)
    {
        goto ErrorExit;
    }

    // Allocate a buffer to hold the encrypted data.
    pbData = (PBYTE)malloc(dwLength);
    if(!pbData)
    {
        goto ErrorExit;
    }

    // Copy the unencrypted data to the buffer. The data will be 
    // encrypted in place.
    memcpy(pbData, g_rgbData, sizeof(g_rgbData)); 

    // Encrypt the data.
    dwLength = sizeof(g_rgbData);
    fReturn = CryptEncrypt(
        hSessionKey1, 
        0, 
        TRUE,
        0, 
        pbData, 
        &dwLength,
        sizeof(g_rgbData));
    if(!fReturn)
    {
        goto ErrorExit;
    }

    /************************
    Decrypt the data with party 2's session key. 
    ************************/
    dwLength = sizeof(g_rgbData);
    fReturn = CryptDecrypt(
        hSessionKey2,
        0,
        TRUE,
        0,
        pbData,
        &dwLength);
    if(!fReturn)
    {
        goto ErrorExit;
    }


ErrorExit:
    if(pbData)
    {
        free(pbData);
        pbData = NULL;
    }

    if(hSessionKey2)
    {
        CryptDestroyKey(hSessionKey2);
        hSessionKey2 = NULL;
    }

    if(hSessionKey1)
    {
        CryptDestroyKey(hSessionKey1);
        hSessionKey1 = NULL;
    }

    if(pbKeyBlob2)
    {
        free(pbKeyBlob2);
        pbKeyBlob2 = NULL;
    }

    if(pbKeyBlob1)
    {
        free(pbKeyBlob1);
        pbKeyBlob1 = NULL;
    }

    if(hPrivateKey2)
    {
        CryptDestroyKey(hPrivateKey2);
        hPrivateKey2 = NULL;
    }

    if(hPrivateKey1)
    {
        CryptDestroyKey(hPrivateKey1);
        hPrivateKey1 = NULL;
    }

    if(hProvParty2)
    {
        CryptReleaseContext(hProvParty2, 0);
        hProvParty2 = NULL;
    }

    if(hProvParty1)
    {
        CryptReleaseContext(hProvParty1, 0);
        hProvParty1 = NULL;
    }

    return 0;
}

我相信我可以在Python中完成Diffie-Hellman密钥交换,因为我可以无错误地生成相同的公钥和私钥。我在this repository上建立了我的Diffie-Hellman密钥交换。

我无法测试这个,但是因为我似乎无法获得从C ++代码导出的共享秘密(类似于this thread,但从未得到满意的回答)。但是,我可以使用以下代码获取RC4会话密钥:

// Get the key length
DWORD keylen;
CryptExportKey(   
    hSessionKey1,
    NULL,    
    PLAINTEXTKEYBLOB,
    0,
    NULL,
    &keylen);

// Get the session key
CryptExportKey(   
    hSessionKey1,
    NULL,     
    PLAINTEXTKEYBLOB,   
    0,  
    encKey,    
    &keylen);

这个函数的输出让我:

08 02 00 00 01 68 00 00 10 00 00 00 75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b

我知道这有一个12字节的标头+长度,因此我留下了以下16字节的RC4会话密钥:

75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b

所以我目前正在尝试验证我可以使用我从CryptExportKey获得的RC4加密相同的明文。我目前正在尝试从上面的C ++代码加密g_rgbData,该代码设置为:

BYTE g_rgbData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};

使用C ++代码,我得到以下加密输出:

cc 94 aa ec 86 6e a8 26

使用pycrypto我有以下代码:

from Crypto.Cipher import ARC4
key = '75 2c 59 8c 6e e0 8c 9f ed 30 17 7e 9d a5 85 2b'
key = key.replace(' ', '').decode('hex')

plaintext = '0102030405060708'
plaintext = plaintext.replace(' ', '').decode('hex')

rc4 = ARC4.new(key)
encrypted = rc4.encrypt(plaintext)

print encrypted.encode('hex')

这导致以下输出:

00 5b 64 25 4e a5 62 e3

哪个与C ++输出不匹配。我玩过endianess,但我怀疑还有其他事情可能发生。

很抱歉,如果这很长,但它带给我两个问题:

  1. 每当您从共享密钥转换到RC4时(使用CryptSetKeyParam使用CALG_RC4),这里真正发生了什么?我似乎无法在任何地方找到有关此过程的任何信息,以便我可以在Python中实现它。

  2. 知道为什么我的RC4在Python中不能使用相同的密钥和相同的明文吗?

  3. 非常感谢任何帮助!

2 个答案:

答案 0 :(得分:6)

最后有时间查看你的代码。当我在本地运行您的代码时,我能够导出会话密钥并可以在pycrypto中成功使用它。我的猜测是你要么没有正确导出会话密钥(例如你发布的是你正在运行的内容?),要么你在C ++中加密的数据与你在Python中加密的数据不同 - 仔细检查数据你加密也是正确的。我怀疑它可能是后者,因为没有太多你可以搞砸你发布的CryptExportKey

答案 1 :(得分:1)

根据PyCrypto docs,您的密钥必须至少为40个字节:

  

key(byte string) - 在对称密码中使用的密钥。它可以有任意长度,至少40字节。它的密码强度总是限制在2048位(256字节)。

但是上面有一个矛盾:

  

key_size = xrange(1,257)

     

密钥的大小(以字节为单位)

允许密钥长度为1-256,因此我不确定这是否有帮助。