将变量更新为多处理python

时间:2015-12-17 14:53:01

标签: python variables multiprocessing

我使用2个python进程,我想知道如何共享和更新变量。 我设法将变量发送到流程,但在此过程中不会更新此变量。

在我的代码中,当启动进程worker时,它每3秒增加一次变量a。 与此同时,流程my_service会持续显示a的价值。

#!/usr/bin/python
# -*- coding: utf-8 -*-

#import multiprocessing as mp
#from multiprocessing import Process
import multiprocessing

import time
from globalvar import *
a=8
#toto=8

def worker():
    name = multiprocessing.current_process().name
    # print (name,"Starting")
    # time.sleep(2)
    # print (name, "Exiting")
    for a in range(1,4):
        print ("worker=",a)
        time.sleep(3)

def my_service(az):
    name = multiprocessing.current_process().name
    # print (name,"Starting")
    # time.sleep(3)
    # print (name, "Exiting")
    while True:
        print ("my_service=",az)
        time.sleep(2)

if __name__ == '__main__':
    #Process(target=worker).start()
    service = multiprocessing.Process(name='my_service', target=my_service,args=(a,))
    worker_1 = multiprocessing.Process(name='worker 1', target=worker)
    worker_2 = multiprocessing.Process(target=worker) # use default name

    worker_1.start()
    worker_2.start()
    service.start()

但结果并非我所期望的:

worker= 1
worker= 1
my_service= 8
my_service= 8
worker= 2
worker= 2
my_service= 8
worker= 3
worker= 3
my_service= 8

变为worker的变量增加了,但变量未在过程service

中显示

那么如何在进程之间共享更新的变量?

THX,

1 个答案:

答案 0 :(得分:1)

使用python进行多处理的问题在于,任何进程都与其他进程完全独立。在lauching上,它复制当前变量然后处理此副本:这意味着对变量状态的任何修改都不会复制到另一个进程。 这是由Python的全局解释器锁引起的,它确保只有一个进程可以同时访问变量,以避免破坏内存。您可以在此处查看更多内容:What is a global interpreter lock (GIL)?

现在针对您的特定问题,您可以使用共享变量。

from multiprocessing import Value
a=Value('f', 0.0) # create a shared float, initialised at 0
a.value # read the value
a.value=50 # modify the value

您需要声明a并将其作为每个流程的参数传递。

但是当你"绕过"在GIL中,您需要管理自己对此变量的访问,以避免让2个进程同时尝试读取/修改它。这就是为什么每个共享变量都带有Lock,允许访问变量。

a.acquire() #acquire the Lock, forbidding access to other processes.
a.value # read the value
a.value=50 # modify the value
a.release() # don't forget to release the lock, or else you will block everything.

请注意,如果出现错误/异常,如果锁定未被释放,则对您的变量的访问将永久丢失。如果这是一个问题,请添加:

try:
    a.acquire() #acquire the Lock, forbidding access to other processes.
    a.value # read the value
    a.value=50 # modify the value
    a.release() # don't forget to release the lock, or else you will block everything.
except Exception as e:
    print e
    a.release()

您的最终代码:

#!/usr/bin/python
# -*- coding: utf-8 -*-

import multiprocessing
from multiprocessing import Value

import time
#from globalvar import *
a=Value('f', 8)
#toto=8

def worker(a):
    try:
        name = multiprocessing.current_process().name
        for i in range(1,4):
            a.acquire()
            a.value=i
            a.release()
            print ("worker=",a.value)
            time.sleep(3)
    except Exception as e:
        print e
        a.release()

def my_service(az):
    name = multiprocessing.current_process().name
    # print (name,"Starting")
    # time.sleep(3)
    # print (name, "Exiting")
    while True:
        try:
            az.acquire()
            print ("my_service=",az.value)
            az.release()
            time.sleep(2)
        except Exception as e:
            print e
            az.release()

if __name__ == '__main__':
    #Process(target=worker).start()
    service = multiprocessing.Process(name='my_service', target=my_service,args=(a,))
    worker_1 = multiprocessing.Process(name='worker 1', target=worker,args=(a,))
    worker_2 = multiprocessing.Process(target=worker,args=(a,)) # use default name

    worker_1.start()
    worker_2.start()
    service.start()