我在熊猫中有以下数据框。现在,如果我在“活动”列中看到一个值,我想生成子数据框。例如,我希望数据框包含名称为A
IF活动列的所有数据为值3
或5
。
Name Date Activity
A 01-02-2015 1
A 01-03-2015 2
A 01-04-2015 3
A 01-04-2015 1
B 01-02-2015 1
B 01-02-2015 2
B 01-03-2015 1
B 01-04-2015 5
C 01-31-2015 1
C 01-31-2015 2
C 01-31-2015 2
所以对于上面的数据,我想得到
df_A
为
Name Date Activity
A 01-02-2015 1
A 01-03-2015 2
A 01-04-2015 3
A 01-04-2015 1
df_B
B 01-02-2015 1
B 01-02-2015 2
B 01-03-2015 1
B 01-04-2015 5
由于名称C
在3
列中没有5
或Activity
,因此我不想获取此数据框。
此外,数据框中的名称可能因每个输入文件而异。
一旦我将这些数据框分开,我想绘制一个时间序列。
答案 0 :(得分:2)
您可以按Name
列,groupby
自定义函数f
apply
数据框,然后选择数据框df_A
和df_B
:
print df
Name Date Activity
0 A 2015-01-02 1
1 A 2015-01-03 2
2 A 2015-01-04 3
3 A 2015-01-04 1
4 B 2015-01-02 1
5 B 2015-01-02 2
6 B 2015-01-03 1
7 B 2015-01-04 5
8 C 2015-01-31 1
9 C 2015-01-31 2
10 C 2015-01-31 2
def f(df):
if ((df['Activity'] == 3) | (df['Activity'] == 5)).any():
return df
g = df.groupby('Name').apply(f).reset_index(drop=True)
df_A = g.loc[g.Name == 'A']
print df_A
Name Date Activity
0 A 2015-01-02 1
1 A 2015-01-03 2
2 A 2015-01-04 3
3 A 2015-01-04 1
df_B = g.loc[g.Name == 'B']
print df_B
Name Date Activity
4 B 2015-01-02 1
5 B 2015-01-02 2
6 B 2015-01-03 1
7 B 2015-01-04 5
df_A.plot()
df_B.plot()
编辑:
如果您想动态创建数据框,请使用drop_duplicates
查找列Name
的所有唯一值:
for name in g.Name.drop_duplicates():
print g.loc[g.Name == name]
Name Date Activity
0 A 2015-01-02 1
1 A 2015-01-03 2
2 A 2015-01-04 3
3 A 2015-01-04 1
Name Date Activity
4 B 2015-01-02 1
5 B 2015-01-02 2
6 B 2015-01-03 1
7 B 2015-01-04 5
答案 1 :(得分:1)
您可以使用词典理解为每个名称创建一个子数据帧,其活动值为3或5。
active_names = df[df.Activity.isin([3, 5])].Name.unique().tolist()
dfs = {name: df.loc[df.Name == name, :] for name in active_names}
>>> dfs['A']
Name Date Activity
0 A 01-02-2015 1
1 A 01-03-2015 2
2 A 01-04-2015 3
3 A 01-04-2015 1
>>> dfs['B']
Name Date Activity
4 B 01-02-2015 1
5 B 01-02-2015 2
6 B 01-03-2015 1
7 B 01-04-2015 5