我在R中有一个简单的通量模型。它归结为两个微分方程,模拟模型中的两个状态变量,我们称之为A
和B
。它们被计算为四分量通量flux1-flux4
,5个参数p1-p5
和第六个参数of_interest
的简单差分方程,它们可以取0-1之间的值。
parameters<- c(p1=0.028, p2=0.3, p3=0.5, p4=0.0002, p5=0.001, of_interest=0.1)
state <- c(A=28, B=1.4)
model<-function(t,state,parameters){
with(as.list(c(state,parameters)),{
#fluxes
flux1 = (1-of_interest) * p1*(B / (p2 + B))*p3
flux2 = p4* A #microbial death
flux3 = of_interest * p1*(B / (p2 + B))*p3
flux4 = p5* B
#differential equations of component fluxes
dAdt<- flux1 - flux2
dBdt<- flux3 - flux4
list(c(dAdt,dBdt))
})
我想编写一个函数来获取dAdt
相对于of_interest
的导数,将导出的等式设置为0,然后重新排列并求解of_interest
的值。这将是最大化函数of_interest
的参数dAdt
的值。
到目前为止,我已经能够在of_interest
的可能值范围内以稳定状态求解模型,以证明应该存在最大值。
require(rootSolve)
range<- seq(0,1,by=0.01)
for(i in range){
of_interest=i
parameters<- c(p1=0.028, p2=0.3, p3=0.5, p4=0.0002, p5=0.001, of_interest=of_interest)
state <- c(A=28, B=1.4)
ST<- stode(y=y,func=model,parms=parameters,pos=T)
out<- c(out,ST$y[1])
然后绘图:
plot(out~range, pch=16,col='purple')
lines(smooth.spline(out~range,spar=0.35), lwd=3,lty=1)
如何以分析方式求解在R中最大化of_interest
的{{1}}的值?如果无法获得分析解决方案,我怎么知道,以及如何以数字方式解决这个问题?
更新:我认为这个问题可以通过R中的deSolve包解决,链接here,但是我在使用我的特定示例时无法实现它。
答案 0 :(得分:4)
B(t)
中的公式只是可分离的,因为你可以将B(t)
分开,从中可以得到
B(t) = C * exp{-p5 * t} * (p2 + B(t)) ^ {of_interest * p1 * p3}
这是B(t)
的隐式解决方案,我们将逐点解决。
如果初始值为C
,您可以求解B
。我想最初是t = 0
?在这种情况下
C = B_0 / (p2 + B_0) ^ {of_interest * p1 * p3}
这也为A(t)
提供了一个更好看的表达式:
dA(t) / dt = B_0 / (p2 + B_0) * p1 * p3 * (1 - of_interest) *
exp{-p5 * t} * ((p2 + B(t) / (p2 + B_0)) ^
{of_interest * p1 * p3 - 1} - p4 * A(t)
这可以通过积分因子(= exp{p4 * t}
),通过涉及B(t)
的术语的数值积分来解决。我们将积分的下限指定为0,这样我们就不必在[0, t]
范围之外评估B,这意味着积分常数只是A_0
,因此:
A(t) = (A_0 + integral_0^t { f(tau; parameters) d tau}) * exp{-p4 * t}
基本要点是B(t)
正在驱动这个系统中的所有内容 - 方法将是:解决B(t)
的行为,然后使用它来弄清楚{{1}发生了什么然后最大化。
首先,“外部”参数;我们还需要A(t)
才能获得nleqslv
:
B
从这里开始,基本概要是:
library(nleqslv)
t_min <- 0
t_max <- 10000
t_N <- 10
#we'll only solve the behavior of A & B over t_rng
t_rng <- seq(t_min, t_max, length.out = t_N)
#I'm calling of_interest ttheta
ttheta_min <- 0
ttheta_max <- 1
ttheta_N <- 5
tthetas <- seq(ttheta_min, ttheta_max, length.out = ttheta_N)
B_0 <- 1.4
A_0 <- 28
#No sense storing this as a vector when we'll only ever use it as a list
parameters <- list(p1 = 0.028, p2 = 0.3, p3 = 0.5,
p4 = 0.0002, p5 = 0.001)
),通过非线性方程求解求解ttheta
超过BB
t_rng
和参数值,通过数值积分求解BB
超过AA
t_rng
以及您对dAdt的表达,请插入&amp;最大化。衍生物&lt; - sapply(tthetas,function(th){ #append current ttheta params&lt; - c(参数,ttheta = th)
AA
此代码未针对效率进行优化。有几个地方有一些潜在的加速:
#declare a function we'll use to solve for B (see above)
b_slv <- function(b, t)
with(params, b - B_0 * ((p2 + b)/(p2 + B_0)) ^
(ttheta * p1 * p3) * exp(-p5 * t))
#solving point-wise (this is pretty fast)
# **See below for a note**
BB <- sapply(t_rng, function(t) nleqslv(B_0, function(b) b_slv(b, t))$x)
#this is f(tau; params) that I mentioned above;
# we have to do linear interpolation since the
# numerical integrator isn't constrained to the grid.
# **See below for note**
a_int <- function(t){
#approximate t to the grid (t_rng)
# (assumes B is monotonic, which seems to be true)
# (also, if t ends up negative, just assign t_rng[1])
t_n <- max(1L, which.max(t_rng - t >= 0) - 1L)
idx <- t_n:(t_n+1)
ts <- t_rng[idx]
#distance-weighted average of the local B values
B_app <- sum((-1) ^ (0:1) * (t - ts) / diff(ts) * BB[idx])
#finally, f(tau; params)
with(params, (1 - ttheta) * p1 * p3 * B_0 / (p2 + B_0) *
((p2 + B_app)/(p2 + B_0)) ^ (ttheta * p1 * p3 - 1) *
exp((p4 - p5) * t))
}
#a_int only works on scalars; the numeric integrator
# requires a version that works on vectors
a_int_v <- function(t) sapply(t, a_int)
AA <- exp(-params$p4 * t_rng) *
sapply(t_rng, function(tt)
#I found the subdivisions constraint binding in some cases
# at the default value; no trouble at 1000.
A_0 + integrate(a_int_v, 0, tt, subdivisions = 1000L)$value)
#using the explicit version of dAdt given as flux1 - flux2
max(with(params, (1 - ttheta) * p1 * p3 * BB / (p2 + BB) - p4 * AA))})
Finally, simply run `tthetas[which.max(derivs)]` to get the maximizer.
运行它,并在几分钟内运行。t_N == ttheta_N == 1000L
进行矢量化,而不仅仅是a_int
,这可以通过更直接地吸引BLAS来加快速度。sapply
,因为它被重复使用等等。我并不打算包括任何这些东西,因为你真的可能最好把它移植到更快的语言 - 朱莉娅是我自己的宠物最喜欢的,但当然R与C ++,C, Fortran等。