我使用以下代码制作散点图,其前景中有一个额外的轮廓图。我正在尝试为两个图形创建颜色条(一个在底部,一个在右侧),但它们不在图片的范围内(正确的一个,正如人们可以看到它的剪切标签) 。有谁知道问题可能是什么?
提前致谢
import matplotlib as mpl
params = {
'figure.figsize' : [5.0, 4.0],
'legend.fontsize' : 12,
'text.usetex' : True,
'xtick.major.size' : 6,
'xtick.minor.size' : 4,
'ytick.major.size' : 6,
'ytick.minor.size' : 4
}
mpl.rcParams.update(params)
mpl.rcParams.update({'figure.autolayout': True})
import matplotlib.pyplot as plt
import numpy as np
import pylab as pl
import math
import scipy.interpolate
import os
from mpl_toolkits.axes_grid1 import make_axes_locatable
from glob import glob
xax = r'$\mu $'
yax = r'$\nu $'
a = np.genfromtxt(r'data.dat', usecols = (0), unpack=True)
b = np.genfromtxt(r'data.dat', usecols = (1), unpack=True)
r = np.genfromtxt(r'data.dat', usecols = (4), unpack=True)
p = np.genfromtxt(r'data.dat', usecols = (5), unpack=True)
N = 100 #number of points for plotting/interpolation
a_new = np.linspace(-22.0, 22.0, N)
b_new = np.linspace(-22.0, 22.0, N)
r_new = scipy.interpolate.griddata( (a, b), r,\
(a_new[None,:], b_new[:,None]), method='cubic')
p_new = scipy.interpolate.griddata( (a, b), p,\
(a_new[None,:], b_new[:,None]), method='cubic')
fig = plt.figure()
ax = plt.gca()
CS = plt.contour(a_new, b_new, r_new, zorder=+1)
p_scat = ax.scatter(a, b, marker='.', s=7, linewidths=0, c=p, cmap= \
plt.get_cmap('jet'), zorder=-1)
pl.xlim([-22.0, 22.0])
pl.ylim([-22.0, 22.0])
plt.xlabel(xax)
plt.ylabel(yax)
cax_h = fig.add_axes([0.05, 0.0, 0.85, 0.05]) # [left, bottom, width, height]
cax_v = fig.add_axes([0.92, 0.0, 0.05, 0.80])
colorbar_contour = plt.colorbar(CS,ticks=contour_values_r, cax=cax_h, orientation='horizontal')
colorbar_scatter = plt.colorbar(p_scat, ticks=ticks_phi, cax=cax_v, orientation='vertical')
colorbar_scatter.set_ticklabels(labels_ticks_p, update_ticks=True)
plt.show()
不幸的是,这样做的颜色栏正在离开图片的范围(见图片)。
答案 0 :(得分:2)
我不知道你在哪里得到了cax_h
和cax_v
的坐标,但是对于这些图形,我经常发现指定相对于图形轴的颜色条位置很有用。您可以使用ax.get_position()
获取坐标,并使用它来定位颜色条。例如:
import numpy as np
import matplotlib.pylab as pl
a = np.random.random((10,10))
b = np.random.random((10,10))
c = np.random.random((10,10))
x = np.linspace(0,1,10)
y = np.linspace(0,1,10)
fig = pl.figure()
# Adjust the axis position, to create sufficient room for two colorbars:
# L B R T ws hs
fig.subplots_adjust(0.09,0.19,0.87,0.94,0.04,0.3)
# Dummy contour and scatter plots
ct = pl.contourf(x, y, b)
sc = pl.scatter(a, b, c=c)
# Get current ax and its position:
ax = pl.gca()
axp = ax.get_position()
# Set the colorbar axes relative to figure ax
cax_h = fig.add_axes([axp.x0, axp.y0-0.1, axp.x1-axp.x0, 0.02])
cax_v = fig.add_axes([axp.x1+0.02, axp.y0, 0.02, axp.y1-axp.y0])
pl.colorbar(ct, cax=cax_v, orientation='vertical')
pl.colorbar(sc, cax=cax_h, orientation='horizontal')