我对KM分析有疑问。 我有像第一个 10 个案这样的ExpressionSet:
eset()
ExpressionSet (storageMode: lockedEnvironment)
assayData: 6 features, 6 samples
element names: exprs
protocolData: none
phenoData
sampleNames: 1 2 ... 6 (6 total)
varLabels: age_at_diagnosis last_follow_up_status ... lymph_nodes_removed (9 total)
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:
这是我对eset的表达:
1 2 3 4 5 6
a 8.676978 9.653589 9.033589 8.814855 8.736406 9.274265
b 5.298711 5.378801 5.606122 5.316155 5.303613 5.449802
c 5.430877 5.199253 5.449121 5.309371 5.438538 5.347851
d 6.075331 6.687887 5.910885 5.628740 6.392422 5.908698
e 5.595625 6.010127 5.683969 5.479983 6.013500 5.939949
f 5.453928 5.454185 5.501577 5.471941 5.525027 5.531743
这是pData:
age Status MEN group grade size stage LNP LNR time mn doc
1 52.79 d post 4 2 18 2 1 12 3.865753 pos 0
2 32.61 d pre 3 3 16 2 5 23 1.679452 neg 1
3 66.83 a post 4 3 15 3 8 17 5.616438 pos 0
4 71.21 a post 4 3 21 2 1 12 1.169863 pos 1
5 76.84 d-d.s. post 4 3 50 2 3 24 3.602740 pos 1
6 60.77 a post 4 2 23 2 0 2 1.367123 pos 0
我知道如何为整个数据集生成KM曲线,这是我的代码;我只给你一个前10个案例的数据,因为它是堆栈网站的空间限制:
library(survival)
c <- Surv(as.numeric(ab$time), ab$doc)
plot(survfit( c ~ as.factor(ab$mn)))
所以,我的问题是如何将此代码修改为 ab $ mn ==&#39; neg&#39;
提前致谢,
答案 0 :(得分:2)
我会遵循Terry Therneau关于如何使用Surv
函数的建议,该函数不是构建Surv
- coxph函数之外的对象。这也可以让您使用subset
- coxph
的便捷功能参数:
plot(survfit( Surv(as.numeric(time), doc) ~ as.factor(mn), data=ab, subset = mn == 'neg' ))