我今天正在对一些缓慢的SQL查询进行故障排除,并且不太了解下面的性能差异:
当尝试根据某些条件从数据表中提取max(timestamp)
时,如果存在匹配的行,则使用MAX()
比ORDER BY timestamp LIMIT 1
慢,但如果没有匹配的行,则使用SELECT timestamp
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 4
ORDER BY timestamp DESC
LIMIT 1;
(0 rows)
Time: 1314.544 ms
SELECT timestamp
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 5
ORDER BY timestamp DESC
LIMIT 1;
(1 row)
Time: 10.890 ms
SELECT MAX(timestamp)
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 4;
(0 rows)
Time: 0.869 ms
SELECT MAX(timestamp)
FROM data JOIN sensors ON ( sensors.id = data.sensor_id )
WHERE sensor.station_id = 5;
(1 row)
Time: 84.087 ms
要快得多找到。
(timestamp)
(sensor_id, timestamp)
和QUERY PLAN (ORDER BY)
--------------------------------------------------------------------------------------------------------
Limit (cost=0.43..9.47 rows=1 width=8)
-> Nested Loop (cost=0.43..396254.63 rows=43823 width=8)
Join Filter: (data.sensor_id = sensors.id)
-> Index Scan using timestamp_ind on data (cost=0.43..254918.66 rows=4710976 width=12)
-> Materialize (cost=0.00..6.70 rows=2 width=4)
-> Seq Scan on sensors (cost=0.00..6.69 rows=2 width=4)
Filter: (station_id = 4)
(7 rows)
QUERY PLAN (MAX)
----------------------------------------------------------------------------------------------------------
Aggregate (cost=3680.59..3680.60 rows=1 width=8)
-> Nested Loop (cost=0.43..3571.03 rows=43823 width=8)
-> Seq Scan on sensors (cost=0.00..6.69 rows=2 width=4)
Filter: (station_id = 4)
-> Index Only Scan using sensor_ind_timestamp on data (cost=0.43..1389.59 rows=39258 width=12)
Index Cond: (sensor_id = sensors.id)
(6 rows)
上有索引,我注意到Postgres对这两种情况使用了非常不同的查询计划和索引:
EXISTS
所以我的两个问题是:
Table "public.sensors"
Column | Type | Modifiers
----------------------+------------------------+-----------------------------------------------------------------
id | integer | not null default nextval('sensors_id_seq'::regclass)
station_id | integer | not null
....
Indexes:
"sensor_primary" PRIMARY KEY, btree (id)
"ind_station_id" btree (station_id, id)
"ind_station" btree (station_id)
Table "public.data"
Column | Type | Modifiers
-----------+--------------------------+------------------------------------------------------------------
id | integer | not null default nextval('data_id_seq'::regclass)
timestamp | timestamp with time zone | not null
sensor_id | integer | not null
avg | integer |
Indexes:
"timestamp_ind" btree ("timestamp" DESC)
"sensor_ind" btree (sensor_id)
"sensor_ind_timestamp" btree (sensor_id, "timestamp")
"sensor_ind_timestamp_desc" btree (sensor_id, "timestamp" DESC)
支票?编辑以解决以下评论中的问题。我保留了上面的初始查询计划以供将来参考:
表定义:
ind_station_id
请注意,我刚刚在@ Erwin的建议之后在sensors
添加了>1200ms
。在ORDER BY DESC + LIMIT 1
案件~0.9ms
案件MAX
和QUERY PLAN (ORDER BY)
----------------------------------------------------------------------------------------------------------
Limit (cost=0.58..9.62 rows=1 width=8) (actual time=2161.054..2161.054 rows=0 loops=1)
Buffers: shared hit=3418066 read=47326
-> Nested Loop (cost=0.58..396382.45 rows=43823 width=8) (actual time=2161.053..2161.053 rows=0 loops=1)
Join Filter: (data.sensor_id = sensors.id)
Buffers: shared hit=3418066 read=47326
-> Index Scan using timestamp_ind on data (cost=0.43..255048.99 rows=4710976 width=12) (actual time=0.047..1410.715 rows=4710976 loops=1)
Buffers: shared hit=3418065 read=47326
-> Materialize (cost=0.14..4.19 rows=2 width=4) (actual time=0.000..0.000 rows=0 loops=4710976)
Buffers: shared hit=1
-> Index Only Scan using ind_station_id on sensors (cost=0.14..4.18 rows=2 width=4) (actual time=0.004..0.004 rows=0 loops=1)
Index Cond: (station_id = 4)
Heap Fetches: 0
Buffers: shared hit=1
Planning time: 0.478 ms
Execution time: 2161.090 ms
(15 rows)
QUERY (MAX)
----------------------------------------------------------------------------------------------------------
Aggregate (cost=3678.08..3678.09 rows=1 width=8) (actual time=0.009..0.009 rows=1 loops=1)
Buffers: shared hit=1
-> Nested Loop (cost=0.58..3568.52 rows=43823 width=8) (actual time=0.006..0.006 rows=0 loops=1)
Buffers: shared hit=1
-> Index Only Scan using ind_station_id on sensors (cost=0.14..4.18 rows=2 width=4) (actual time=0.005..0.005 rows=0 loops=1)
Index Cond: (station_id = 4)
Heap Fetches: 0
Buffers: shared hit=1
-> Index Only Scan using sensor_ind_timestamp on data (cost=0.43..1389.59 rows=39258 width=12) (never executed)
Index Cond: (sensor_id = sensors.id)
Heap Fetches: 0
Planning time: 0.435 ms
Execution time: 0.048 ms
(13 rows)
案件ORDER BY
案件中,时间确实发生了巨大变化。
查询计划:
Scan using timestamp_in on data
就像之前的解释一样,MAX
会执行PostgreSQL 9.4.5 on x86_64-unknown-linux-gnu, compiled by gcc (Ubuntu 5.2.1-21ubuntu2) 5.2.1 20151003, 64-bit
,而NOT NULL
案例中没有这样做。
Postgres版本:
来自Ubuntu回购的Postgres:ORDER BY
请注意,存在EXISTS (<1ms)
个约束,因此SELECT (~11ms)
不必排空空行。
另请注意,我对差异的来源非常感兴趣。虽然不理想,但我可以使用 Map<String, Object> properties = new HashMap<String, Object>();
properties.put(EJBContainer.MODULES, new File("target/classes"));
ec = EJBContainer.createEJBContainer(properties);
然后NewLetterDimensions()
相对快速地检索数据。
答案 0 :(得分:10)
sensor.station_id
似乎没有索引,这在这里很重要。
max()
和ORDER BY DESC + LIMIT 1
之间存在实际的差异。很多人似乎都错过了。 NULL值按降序排序顺序排序 。因此ORDER BY timestamp DESC LIMIT 1
会返回timestamp IS NULL
行(如果存在),而聚合函数max()
会忽略 NULL值并返回最新的非空时间戳。
对于您的情况,由于您的列d.timestamp
已定义为NOT NULL
(如您的更新所示),因此无效差异。包含DESC NULLS LAST
的索引和ORDER BY
LIMIT
查询中的相同子句仍应为您提供最佳服务。我建议这些索引(我的查询建立在第二个上面):
sensor(station_id, id)
data(sensor_id, timestamp DESC NULLS LAST)
您可以删除其他索引变体 和sensor_ind_timestamp
,除非您有其他查询仍然需要它们(不太可能,但可能) sensor_ind_timestamp_desc
更重要的是,还有另一个难点:第一个表sensors
上的过滤器返回很少但仍然(可能)多行。 Postgres 希望在您添加的rows=2
输出中找到2行(EXPLAIN
)。
完美的技术是第二个表data
的 松散索引扫描 - 目前在Postgres 9.4(或Postgres 9.5)中没有实现。您可以通过各种方式重写查询以解决此限制。详细说明:
最好的应该是:
SELECT d.timestamp
FROM sensors s
CROSS JOIN LATERAL (
SELECT timestamp
FROM data
WHERE sensor_id = s.id
ORDER BY timestamp DESC NULLS LAST
LIMIT 1
) d
WHERE s.station_id = 4
ORDER BY d.timestamp DESC NULLS LAST
LIMIT 1;
由于外部查询的样式大多无关紧要,您也可以:
SELECT max(d.timestamp) AS timestamp
FROM sensors s
CROSS JOIN LATERAL (
SELECT timestamp
FROM data
WHERE sensor_id = s.id
ORDER BY timestamp DESC NULLS LAST
LIMIT 1
) d
WHERE s.station_id = 4;
max()
变体的执行速度应该与现在一样快:
SELECT max(d.timestamp) AS timestamp
FROM sensors s
CROSS JOIN LATERAL (
SELECT max(timestamp) AS timestamp
FROM data
WHERE sensor_id = s.id
) d
WHERE s.station_id = 4;
甚至,最短的:
SELECT max((SELECT max(timestamp) FROM data WHERE sensor_id = s.id)) AS timestamp
FROM sensors s
WHERE station_id = 4;
注意双括号!
LIMIT
联接中LATERAL
的另一个好处是,您可以检索所选行的任意列,而不仅仅是最新的时间戳(一列)。
相关:
答案 1 :(得分:2)
查询计划显示索引名称timestamp_ind
和timestamp_sensor_ind
。但是这样的索引对搜索特定传感器没有帮助。
要解析等于查询(如sensor.id = data.sensor_id
),列必须是索引中的第一个。尝试添加一个允许在sensor_id
上搜索的索引,并在传感器中按时间戳排序:
create index sensor_timestamp_ind on data(sensor_id, timestamp);
添加该索引会加快查询速度吗?