我正在尝试处理输出到DVI芯片的像素数据。使用各种时钟频率是因为DVI芯片寄存器是使用I2C编程的(因此需要时钟<500 KHz) - 来自时钟分频器。
DVI芯片需要一个40 MHz的差分像素时钟,然而,DVI需要每半个字节显示半个字节,因此每半个周期需要另外80 MHz时钟将每个像素的一半推到数据线上,这些来自DCM。
这导致了各种各样的问题。我试图只使用双像素时钟速率来交换像素的每一半,但是我得到了错误:
This design contains a global buffer instance, <out2_bufg>,
driving the net, <pxlclk_p_int>, that is driving the following (first 30)
non-clock load pins.
所以我在DCM的输出和使用信号的组件之间添加了一个BUFG元素 - 但它没有改变任何东西,而是现在在BUFG的输入和输出上抛出两次错误。
我的代码如下;我试图删除那些与时钟无关的不相关的东西,但它仍然很长!
编辑1:我添加了块,当添加到系统时,导致错误(之前不存在)它在第二个代码块中!我目前正在研究差分信号的其他建议,并在完成后再次编辑!
非常感谢,
大卫
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
library UNISIM;
use UNISIM.VComponents.all;
ENTITY I2CBus IS
PORT(
SYSCLK_N : IN STD_LOGIC; --system 200MHz differential clock
SYSCLK_P : IN STD_LOGIC;
BTN : IN STD_LOGIC; -- to manually change reset
LED : OUT STD_LOGIC_VECTOR(3 downto 0); --to observe reset value
SCL_DBG : OUT STD_LOGIC; -- copy of SCL to output pin
SDA_DBG : OUT STD_LOGIC; --copy of SDA to output pin
SCL : OUT STD_LOGIC; --Serial Clock Line
SDA : INOUT STD_LOGIC; --Serial Data Line
DVIRESET_N : OUT STD_LOGIC; --reset_n to dvi device
DVI_ENABLE : OUT STD_LOGIC; --enable DVI device inputs (active high)
PXLCLK_P : OUT STD_LOGIC; --pixel clock differential pair through buffers
PXLCLK_N : OUT STD_LOGIC;
DVI_DATA : OUT STD_LOGIC_VECTOR(11 downto 0); --12 bit multiplexed pixel to DVI
HSYNC : OUT STD_LOGIC; --Horizontal/Vertical sync timing pulses
VSYNC : OUT STD_LOGIC
);
END I2CBus;
ARCHITECTURE behavior OF I2CBus IS
COMPONENT IIC_MASTER --sends data to write out onto SDA bus line in I2C protocol
PORT(SCL : IN STD_LOGIC;
SCL2X : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
ENA : IN STD_LOGIC;
ADR : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
REG : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
RW : IN STD_LOGIC;
DAT_WR : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
BUSY : OUT STD_LOGIC;
SDA : INOUT STD_LOGIC;
ACK_ERR : BUFFER STD_LOGIC);
END COMPONENT IIC_MASTER;
COMPONENT DCM --takes input system differential clocks, generates further clocks
PORT(
SYSCLK_P : IN STD_LOGIC; -- CLOCK IN PORTS 200MHZ DIFFERENTIAL
SYSCLK_N : IN STD_LOGIC;
-- CLOCK OUT PORTS
SYSCLK : OUT STD_LOGIC;
PXLCLK : OUT STD_LOGIC;
PXLCLK2X : OUT STD_LOGIC
);
END COMPONENT;
COMPONENT CLK_DIVIDER --divides system clock down for i2c bus clock line
GENERIC(INPUT_FREQ : INTEGER;
OUT1_FREQ : INTEGER;
OUT2_FREQ : INTEGER);
PORT(SYSCLK : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
RESET_N_OUT : OUT STD_LOGIC;
OUT1 : OUT STD_LOGIC;
OUT2 : OUT STD_LOGIC);
END COMPONENT CLK_DIVIDER;
COMPONENT DVI_INITIALISE --initialises CH7301c registers to necessary operation values
PORT(SYSCLK : IN STD_LOGIC;
ACK_ERR : IN STD_LOGIC;
BUSY : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
COUNT : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
DVI_WR : OUT STD_LOGIC := '0';
DVI_REGDATA : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
DVI_WDATA : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END COMPONENT DVI_INITIALISE;
COMPONENT DVI_INTERFACE --outputs sync pulses, controls enable and manages pixel addresses
PORT(PIXEL_CLK : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
PXL_ADDR : OUT STD_LOGIC_VECTOR(19 DOWNTO 0) := (OTHERS => '0');
HSYNC, VSYNC : OUT STD_LOGIC := '1';
ENABLE : OUT STD_LOGIC := '0');
END COMPONENT DVI_INTERFACE;
COMPONENT DVI_MUX
PORT(PXLCLK : IN STD_LOGIC;
PXLCLK2X : IN STD_LOGIC;
PXL_DAT : IN STD_LOGIC_VECTOR(23 DOWNTO 0); --pixel as RGB
DATA : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); --multiplexed output
RESET_N : IN STD_LOGIC); --reset low signal
END COMPONENT DVI_MUX;
--Inputs
signal reset_n_input : std_logic; -- input reset from button
----Outputs ------
signal sda_internal : STD_LOGIC; -- Internal SDA
----Clocks-----
signal SCL_internal : std_logic; -- i2c clock
signal SCL2X_internal : std_logic; -- i2c x2 to load SDA data
signal sysclk : std_logic; --system clock
signal pxlclk_p_int : std_logic; --differential pixel clock pair
signal pxlclk_n_int : std_logic;
signal pxlclk : std_logic; --pxlclk after BUFG
signal pxlclk2x_int : STD_LOGIC; --2x pixel clock for loading pixel data
-----Internal Control Signals ---
signal reset_n : std_logic; --active high
signal busy : std_logic; --low when not i2c not busy
signal ack_err : std_logic; --high when i2c ackknowledge error occurs
----Internal Data-----
signal i2c_reg : STD_LOGIC_VECTOR(7 DOWNTO 0); --register data for I2C
signal i2c_rw : STD_LOGIC; --R/W* for I2C
signal i2c_data : STD_LOGIC_VECTOR(7 DOWNTO 0); --Data for I2C
BEGIN
master : IIC_Master
port map(
SCL => SCL_internal,
SCL2X => SCL2X_internal,
RESET_N => RESET_N,
ENA => '1',
ADR => "1110110",
REG => i2c_reg,
RW => i2c_rw,
DAT_WR => i2c_data,
BUSY => busy,
SDA => sda_internal,
ACK_ERR => ack_err
);
DCM_SYS : DCM
port map(
SYSCLK_P => SYSCLK_P, --take differential input clock
SYSCLK_N => SYSCLK_N,
SYSCLK => sysclk, --200 MHz system clock
PXLCLK => pxlclk, --and pixel clock
PXLCLK2X => pxlclk2x_int --pixel clock at double rate
);
Clk_Div : Clk_Divider
generic map(
INPUT_FREQ => 200000000, --200 MHz system input
OUT1_FREQ => 100000, --to work correctly, 200 must go into all frequencies (x2).
OUT2_FREQ => 200000 --i.e. from 200, cannot generate 40 as 200/40/2 = 2.5, which will be 2
)
port map(
SYSCLK => sysclk,
RESET_N => reset_n_input,
RESET_N_OUT => reset_n,
OUT1 => scl_internal,
OUT2 => scl2x_internal
);
data_load : component DVI_INITIALISE
port map(
SYSCLK => sysclk,
ACK_ERR => ack_err,
BUSY => busy,
RESET_N => reset_n,
COUNT => LED,
DVI_WR => i2c_rw,
DVI_REGDATA => i2c_reg,
DVI_WDATA => i2c_data
);
interface : DVI_INTERFACE
port map(
PIXEL_CLK => pxlclk_p_int,
RESET_N => reset_n,
PXL_ADDR => open,
HSYNC => HSYNC,
VSYNC => VSYNC,
ENABLE => DVI_ENABLE
);
pxl_mux : DVI_MUX
port map(
PXLCLK => pxlclk_p_int,
PXLCLK2X => pxlclk2x_int,
PXL_DAT => x"FF0000",
DATA => DVI_DATA,
RESET_N => reset_n
);
------------OUTPUT BUFFERS (CLOCK FORWARDING)------------
ODDR_pxlclk_p : ODDR2
generic map(
DDR_ALIGNMENT => "NONE",
INIT => '0',
SRTYPE => "SYNC")
port map(
Q => PXLCLK_P, --output to positive output
C0 => pxlclk_p_int, --differential input
C1 => pxlclk_n_int,
CE => '1', --chip enable tied high
D0 => '1',
D1 => '0',
R => '0',
S => '0'
);
ODDR_pxlclk_n : ODDR2
generic map(
DDR_ALIGNMENT => "NONE",
INIT => '0',
SRTYPE => "SYNC")
port map(
Q => PXLCLK_N, --output to negative output
C0 => pxlclk_n_int,
C1 => pxlclk_p_int,
CE => '1',
D0 => '1',
D1 => '0',
R => '0',
S => '0'
);
out2_bufg : BUFG port map(I => pxlclk, O => pxlclk_p_int); --ERROR THROWN ON I/O HERE
----------------Mappings---------------------------
reset_n_input <= not BTN; --when button pressed, reset
SCL <= 'Z' when scl_internal = '1' else scl_internal;
SCL_DBG <= 'Z' when scl_internal = '1' else scl_internal;
SDA <= sda_internal;
SDA_DBG <= SDA; --copy SDA to debug line
DVIRESET_N <= reset_n; --reset DVI device
pxlclk_n_int <= not pxlclk_p_int; --create differential pair
end behavior;
DVI_MUX 当我将此块添加到系统时,错误被扔到以前不存在的地方
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
ENTITY DVI_MUX IS
PORT(
PXLCLK : IN STD_LOGIC; --pixel clock
PXLCLK2X : IN STD_LOGIC; --double freq. pixel clock
PXL_DAT : IN STD_LOGIC_VECTOR(23 downto 0); --pixel in RGB format
DATA : OUT STD_LOGIC_VECTOR(11 downto 0); --
RESET_N : IN STD_LOGIC
);
END ENTITY DVI_MUX;
architecture RTL of DVI_Mux is
begin
mux_proc : process(PXLCLK2X)
begin
if falling_edge(PXLCLK2X) then
if PXLCLK = '0' then -- if pxlclk low, load first half of pixel
DATA <= PXL_DAT(23 downto 16) & PXL_DAT(11 downto 8);
else --else load second half
DATA <= PXL_DAT(15 downto 12) & PXL_DAT(7 downto 0);
end if;
if RESET_N = '0' then --if reset active7
DATA <= (others => '1');
end if;
end if;
end process;
end architecture RTL;
答案 0 :(得分:5)
这并不能直接回答您的问题,但您似乎正在尝试使用DDR输出原语来驱动外部差分时钟引脚。这是一件好事,但你做的方式似乎是非常规的。执行此操作的标准方法看起来更像是:
编辑:我意识到我误解了这个问题,并且已经整合了来自@StuartVivian的差分输出实例化pxclk_inverted <= not pxlclk;
ODDR_pxlclk_p : ODDR2
generic map(
DDR_ALIGNMENT => "NONE",
INIT => '0',
SRTYPE => "SYNC")
port map(
Q => PXLCLK_OUT,
C0 => pxlclk,
C1 => pxclk_inverted,
CE => '1',
D0 => '1',
D1 => '0',
R => '0',
S => '0'
);
inst_obufds : OBUFDS
generic map (
IOSTANDARD=>"LVDS_25"
)
port map
(
O => PXLCLK_OUT_P,
OB => PXLCLK_OUT_N,
I => PXLCLK_OUT
);
在IO分配中,PXLCLK_OUT_N / P将被设置为使用差分IO标准。在图形引脚分配窗口中,此端口将使用两个引脚,并且只允许您将它们分配给有效的正/负对。您尝试做的是在DDR输出原语之前手动创建正负信号,这不是它应该工作的方式。
我认为如果你使用这种技术,并摆脱你的BUFG
,你的问题应该消失。如果没有,可以用这个更新问题,无论新问题是什么。
现在您已经更新了问题,我可以看到您的像素输出数据似乎也是DDR总线。您正试图通过使用时钟信号作为选择线来实现多路复用器来推断DDR输出行为。
执行此操作的更标准方法是实例化 n DDR输出基元,并行DDR输出的每一位。根据最新的VHDL标准(VHDL2008),可以推断出DDR输出,但问题是这种技术还没有广泛的工具链支持。
答案 1 :(得分:3)
在该错误消息之后,设计中会有一个最多30个引脚的列表,该工具认为您正在使用时钟驱动但不是实际的时钟引脚。
C0和C1引脚应该被视为时钟,所以我怀疑它是否会抱怨它们。当时钟信号进入我们还没有得到代码的其他模块时,它们是否包含不是时钟引脚的时钟的终点?
我同意scary_jeff关于使用ODDR2的答案。要从ODDR的输出产生差分输出,您需要在代码中实例化差分驱动程序,即Xilinx架构中的LVDS_25或LVDS,然后在ucf或xdc / sdc约束文件中设置逻辑标准。工具文档应该给出明确的例子。
inst_obufds : OBUFDS
generic map ( IOSTANDARD=>"LVDS_25" )
port map
( O => DIFF_P,
OB => DIFF_N,
I => internal_signal
);
答案 2 :(得分:3)
报告消息是因为pxlclk
用于驱动DVI_MUX
组件中的多路复用器,并且此多路复用器位于触发器之前。为了达到多路复用器的选择信号,信号pxlclk
必须使用通用路由而不是专用时钟树。请阅读UG381 from Xilinx, pp. 61/62有关Spartan-6如何支持DDR输出的信息。
我建议将ODDR2
组件也用于数据引脚。输入D0
和D1
仅提供应在时钟C0
和C1
的上升沿输出的数据。请查找UG615 from Xilinx以查找表格和更多信息。
如果文档似乎不清楚,我建议先单独模拟组件DVI_MUX
。