答案 0 :(得分:20)
这是一个指标,它简单地总结了每个要素拆分的次数。它类似于R版本中的频率指标。https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
它是您可以获得的基本功能重要性指标。
<强>即。这个变量拆分了多少次?
此方法的代码显示它只是在所有树中添加给定特征的存在。
[这里.. https://github.com/dmlc/xgboost/blob/master/python-package/xgboost/core.py#L953][1]
def get_fscore(self, fmap=''):
"""Get feature importance of each feature.
Parameters
----------
fmap: str (optional)
The name of feature map file
"""
trees = self.get_dump(fmap) ## dump all the trees to text
fmap = {}
for tree in trees: ## loop through the trees
for line in tree.split('\n'): # text processing
arr = line.split('[')
if len(arr) == 1: # text processing
continue
fid = arr[1].split(']')[0] # text processing
fid = fid.split('<')[0] # split on the greater/less(find variable name)
if fid not in fmap: # if the feature id hasn't been seen yet
fmap[fid] = 1 # add it
else:
fmap[fid] += 1 # else increment it
return fmap # return the fmap, which has the counts of each time a variable was split on
答案 1 :(得分:0)
我发现这个答案是正确和彻底的。它显示了feature_importances的实现。
https://stats.stackexchange.com/questions/162162/relative-variable-importance-for-boosting