如何修改Pandas数据框中索引中“日期”更改(00:00:00)的时间?

时间:2015-12-10 02:53:21

标签: python python-2.7 pandas indexing

我有一个如下所示的数据框:

Date and Time           Close   dif
2015/01/01 17:00:00.211 2030.25 0.3
2015/01/01 17:00:02.456 2030.75 0.595137615
2015/01/01 23:55:01.491 2037.25 2.432613592
2015/01/02 00:02:01.955 2036.75 -0.4
2015/01/02 00:04:04.887 2036.5  -0.391144414
2015/01/02 15:14:56.207 2021.5  -4.732676608
2015/01/02 15:14:59.020 2021.5  -4.731171953
2015/01/02 15:30:00.020 2022    -4.228169436
2015/01/02 16:13:18.948 2021.25 -4.96153033
2015/01/02 16:15:00.000 2021    -5.210187988
2015/01/04 17:00:00.105 2020.5  0
2015/01/04 17:00:01.077 2021    0.423093923

如何修改索引,使当前日期从前一天的17:00:00开始,到15:15:00结束。 (可以消除15:15:00到17:00:00之间的数据)。

新数据框如下所示:

Date and Time           Close   dif
2015/01/02 17:00:00.211 2030.25 0.3
2015/01/02 17:00:02.456 2030.75 0.595137615
2015/01/02 23:55:01.491 2037.25 2.432613592
2015/01/02 00:02:01.955 2036.75 -0.4
2015/01/02 00:04:04.887 2036.5  -0.391144414
2015/01/02 15:14:56.207 2021.5  -4.732676608
2015/01/02 15:14:59.020 2021.5  -4.731171953
2015/01/05 17:00:00.105 2020.5  0
2015/01/05 17:00:01.077 2021    0.423093923

由于

1 个答案:

答案 0 :(得分:1)

这是你在找什么?

# read in your dataframe
import pandas as pd
df = pd.read_csv('dt_data.csv', skipinitialspace=True)
df.columns = ['mydt', 'close', 'dif'] # changed your column name to 'mydt'
df.mydt = pd.to_datetime(df.mydt) # convert mydt to datetime so we can operate on it

# keep times outside [15:15 to 17:00] interval
df = df[(((df.mydt.dt.hour >= 15) & (df.mydt.dt.minute > 15)) 
                                  | (df.mydt.dt.hour == 16))==False]

# increment the day count for hours >= 17 at start of new 'day'
ndx = df[df.mydt.dt.hour>=17].index
df.ix[ndx, 'mydt'] += pd.Timedelta(days=1)

df.set_index('mydt', inplace=True, drop=True)
print(df)

                           close       dif
mydt                                      
2015-01-02 17:00:00.211  2030.25  0.300000
2015-01-02 17:00:02.456  2030.75  0.595138
2015-01-02 00:02:01.955  2036.75 -0.400000
2015-01-02 00:04:04.887  2036.50 -0.391144
2015-01-02 15:14:56.207  2021.50 -4.732677
2015-01-02 15:14:59.020  2021.50 -4.731172
2015-01-05 17:00:00.105  2020.50  0.000000
2015-01-05 17:00:01.077  2021.00  0.423094

编辑:在评论中解决groupby问题。如果您只需要访问上面日期时间列mydt的日期部分,您可以这样做:

df.reset_index(inplace=True)
print(df.mydt.dt.date)

0    2015-01-02
1    2015-01-02
2    2015-01-02
3    2015-01-02
4    2015-01-02
5    2015-01-02
6    2015-01-05
7    2015-01-05
dtype: object

然后你可以只使用日期部分进行groupby操作

print(df.groupby(df.mydt.dt.date)['dif'].sum())

2015-01-02   -9.359855
2015-01-05    0.423094
Name: dif, dtype: float64