Efficient element-wise multiplication of a matrix and a vector in TensorFlow

时间:2015-12-10 01:32:48

标签: python tensorflow linear-algebra matrix-multiplication tensor

What would be the most efficient way to multiply (element-wise) a 2D tensor (matrix):

x11 x12 .. x1N
...
xM1 xM2 .. xMN

by a vertical vector:

w1
...
wN

to obtain a new matrix:

x11*w1 x12*w2 ... x1N*wN
...
xM1*w1 xM2*w2 ... xMN*wN

To give some context, we have M data samples in a batch that can be processed in parallel, and each N-element sample must be multiplied by weights w stored in a variable to eventually pick the largest Xij*wj for each row i.

1 个答案:

答案 0 :(得分:39)

执行此操作的最简单代码依赖于tf.multiply() * 的广播行为,该行为基于numpy's broadcasting behavior

x = tf.constant(5.0, shape=[5, 6])
w = tf.constant([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
xw = tf.multiply(x, w)
max_in_rows = tf.reduce_max(xw, 1)

sess = tf.Session()
print sess.run(xw)
# ==> [[0.0, 5.0, 10.0, 15.0, 20.0, 25.0],
#      [0.0, 5.0, 10.0, 15.0, 20.0, 25.0],
#      [0.0, 5.0, 10.0, 15.0, 20.0, 25.0],
#      [0.0, 5.0, 10.0, 15.0, 20.0, 25.0],
#      [0.0, 5.0, 10.0, 15.0, 20.0, 25.0]]

print sess.run(max_in_rows)
# ==> [25.0, 25.0, 25.0, 25.0, 25.0]

* 在早期版本的TensorFlow中,tf.multiply()被称为tf.mul()。您还可以使用*运算符(即xw = x * w)执行相同的操作。