我有一个包含多个表的.csv
个文件。
使用Pandas,从这个文件中获取两个DataFrame inventory
和HPBladeSystemRack
的最佳策略是什么?
输入.csv
如下所示:
Inventory
System Name IP Address System Status
dg-enc05 Normal
dg-enc05_vc_domain Unknown
dg-enc05-oa1 172.20.0.213 Normal
HP BladeSystem Rack
System Name Rack Name Enclosure Name
dg-enc05 BU40
dg-enc05-oa1 BU40 dg-enc05
dg-enc05-oa2 BU40 dg-enc05
到目前为止,我提出的最好的方法是将此.csv
文件转换为Excel工作簿(xlxs
),将表格拆分为表格并使用:
inventory = read_excel('path_to_file.csv', 'sheet1', skiprow=1)
HPBladeSystemRack = read_excel('path_to_file.csv', 'sheet2', skiprow=2)
然而:
xlrd
模块。答案 0 :(得分:10)
如果您事先知道表名,那么就像这样:
>>> list(tables)
['HP BladeSystem Rack', 'Inventory']
>>> for k,v in tables.items():
... print("table:", k)
... print(v)
... print()
...
table: HP BladeSystem Rack
0 1 2
6 System Name Rack Name Enclosure Name
7 dg-enc05 BU40 NaN
8 dg-enc05-oa1 BU40 dg-enc05
9 dg-enc05-oa2 BU40 dg-enc05
table: Inventory
0 1 2
1 System Name IP Address System Status
2 dg-enc05 NaN Normal
3 dg-enc05_vc_domain NaN Unknown
4 dg-enc05-oa1 172.20.0.213 Normal
应该可以生成一个字典,其中包含键作为表名和值作为子表。

一旦你有了,你就可以将列名设置为第一行等等。
答案 1 :(得分:2)
我假设您知道要从csv
文件中解析的表的名称。如果是这样,您可以检索每个的index
位置,并相应地选择相关切片。作为草图,这可能看起来像:
df = pd.read_csv('path_to_file')
index_positions = []
for table in table_names:
index_positions.append(df[df['col_with_table_names']==table].index.tolist()[0])
## Include end of table for last slice, omit for iteration below
index_positions.append(df.index.tolist()[-1])
tables = {}
for position in index_positions[:-1]:
table_no = index_position.index(position)
tables[table_names[table_no] = df.loc[position:index_positions[table_no+10]]
肯定会有更优雅的解决方案,但这应该会为您提供dictionary
,其中的表名为keys
,相应的表格为values
。
答案 2 :(得分:-1)
Pandas似乎没有准备好这么做,所以我最终做了我自己的split_csv
功能。它只需要表名,并输出以每个表命名的.csv
个文件。
import csv
from os.path import dirname # gets parent folder in a path
from os.path import join # concatenate paths
table_names = ["Inventory", "HP BladeSystem Rack", "Network Interface"]
def split_csv(csv_path, table_names):
tables_infos = detect_tables_from_csv(csv_path, table_names)
for table_info in tables_infos:
split_csv_by_indexes(csv_path, table_info)
def split_csv_by_indexes(csv_path, table_info):
title, start_index, end_index = table_info
print title, start_index, end_index
dir_ = dirname(csv_path)
output_path = join(dir_, title) + ".csv"
with open(output_path, 'w') as output_file, open(csv_path, 'rb') as input_file:
writer = csv.writer(output_file)
reader = csv.reader(input_file)
for i, line in enumerate(reader):
if i < start_index:
continue
if i > end_index:
break
writer.writerow(line)
def detect_tables_from_csv(csv_path, table_names):
output = []
with open(csv_path, 'rb') as csv_file:
reader = csv.reader(csv_file)
for idx, row in enumerate(reader):
for col in row:
match = [title for title in table_names if title in col]
if match:
match = match[0] # get the first matching element
try:
end_index = idx - 1
start_index
except NameError:
start_index = 0
else:
output.append((previous_match, start_index, end_index))
print "Found new table", col
start_index = idx
previous_match = match
match = False
end_index = idx # last 'end_index' set to EOF
output.append((previous_match, start_index, end_index))
return output
if __name__ == '__main__':
csv_path = 'switch_records.csv'
try:
split_csv(csv_path, table_names)
except IOError as e:
print "This file doesn't exist. Aborting."
print e
exit(1)