我正在尝试在视频中进行帧减法。步骤我正在关注
所有我在diff2(和diff)中看到一个完整的黑色图像。我做的一个观察是gray1和gray2的像素值变得相等。
我的代码
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include <opencv2/video/background_segm.hpp>
#include <iostream>
using namespace cv;
using namespace std;
RNG rng(12345);
int main( int argc, const char** argv )
{
VideoCapture cap(0);
if ( !cap.isOpened() )
{
cout << "Cannot open the web cam" << endl;
return -1;
}
Mat img1,img2,diff,gray1,gray2,diff2;
bool bSuccess = cap.read(img1); // read a new frame from video
if (!bSuccess) //if not success, break loop
{
cout << "Cannot read a frame from video stream" << endl;
return -1;
}
cvtColor( img1,gray1, CV_BGR2GRAY );
while (true)
{
bSuccess = cap.read(img2); // read a new frame from video
if (!bSuccess) //if not success, break loop
{
cout << "Cannot read a frame from video stream" << endl;
break;
}
cvtColor( img2,gray2, CV_BGR2GRAY );
absdiff(gray2,gray1,diff);
threshold(diff, diff2, 150, 255, CV_THRESH_BINARY);
cout<<gray2.at<uchar>(100,200) <<endl;
cout<<gray1.at<uchar>(100,200) <<endl;
gray1=gray2;
imshow("1",gray1);
imshow("2",diff2);
if (waitKey(1000) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop
{
cout << "esc key is pressed by user" << endl;
break;
}
}
return -1;
}
答案 0 :(得分:2)
请尝试此代码。看起来您正在覆盖gray1,因此gray1和gray2使用相同的数据存储位置。
您可以使用gray1=gray2.clone();
代替,也可以使用真正的&#34;交换&#34;缓冲区而不是覆盖。我的代码应该执行一个简单的缓冲区交换,并对该问题有一些评论。
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include <opencv2/video/background_segm.hpp>
#include <iostream>
using namespace cv;
using namespace std;
RNG rng(12345);
int main( int argc, const char** argv )
{
VideoCapture cap(0);
if ( !cap.isOpened() )
{
cout << "Cannot open the web cam" << endl;
return -1;
}
Mat img1,img2,diff,gray1,gray2,diff2;
Mat tmp; // used to swap the buffers
bool bSuccess = cap.read(img1); // read a new frame from video
if (!bSuccess) //if not success, break loop
{
cout << "Cannot read a frame from video stream" << endl;
return -1;
}
// this will allocate memory of gray1 if not allocated yet
cvtColor( img1,gray1, CV_BGR2GRAY );
while (true)
{
bSuccess = cap.read(img2); // read a new frame from video
if (!bSuccess) //if not success, break loop
{
cout << "Cannot read a frame from video stream" << endl;
break;
}
// memory for gray2 won't be allocated if it is present already => if gray2 and gray1 use the same data memory, you'll overwrite gray1's pixels here and obviously gray1 and gray2 will have the same pixel values then
cvtColor( img2,gray2, CV_BGR2GRAY );
absdiff(gray2,gray1,diff);
threshold(diff, diff2, 150, 255, CV_THRESH_BINARY);
cout<<gray2.at<uchar>(100,200) <<endl;
cout<<gray1.at<uchar>(100,200) <<endl;
// don't lose the memory of gray1
tmp = gray1;
// this means gray1 and gray2 will use the same data memory location
gray1=gray2;
// give gray2 a new data memory location. Since previous gray1 memory is still present but wont be used anymore, use it here.
gray2=tmp;
imshow("1",gray1);
imshow("2",diff2);
if (waitKey(1000) == 27) //wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop
{
cout << "esc key is pressed by user" << endl;
break;
}
}
return -1;
}
此外,对于常见任务,thres差异阈值150可能非常高,但它可能适合您的特殊任务。根据我的经验,前景提取的背景扣除中的典型差异值/阈值大约是20到30,但最后它取决于您的任务/问题/域。