我正在尝试使用SVM进行c ++对象检测。我正在关注这个answer。我面临一个问题,即CvSVM目前尚未使用。所以我修改了训练代码如下。
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
using namespace cv;
using namespace cv::ml;
int main()
{
// Data for visual representation
int width = 512, height = 512;
Mat image = Mat::zeros(height, width, CV_8UC3);
// Set up training data
float labels[4] = {1.0, -1.0, -1.0, -1.0};
Mat labelsMat(4, 1, CV_32FC1, labels);
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
// Set up SVM's parameters
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setKernel(SVM::LINEAR);
//svm.term_crit = SVM::getTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
// Train the SVM
//Ptr<SVM> svm1 = SVM::trainAuto();
SVM->train(trainingDataMat, labelsMat, Mat(), Mat(), svm);
Vec3b green(0,255,0), blue (255,0,0);
// Show the decision regions given by the SVM
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << j,i);
float response = svm->predict(sampleMat);
if (response == 1)
image.at<Vec3b>(i,j) = green;
else if (response == -1)
image.at<Vec3b>(i,j) = blue;
}
// Show the training data
int thickness = -1;
int lineType = 8;
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
// Show support vectors
thickness = 2;
lineType = 8;
int c = SVM.get_support_vector_count();
for (int i = 0; i < c; ++i)
{
const float* v = SVM.get_support_vector(i);
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
imwrite("result.png", image); // save the image
imshow("SVM Simple Example", image); // show it to the user
waitKey(0);
}
我无法实现列车功能。它说没有找到该功能。请帮助我使用此代码的更新版本。
答案 0 :(得分:2)
您的代码中有多处错误。有些是C ++语法错误,有些是因为您使用的是OpenCV 2.4.X api,这与OpenCV 3.0不同
1)当你引用svm实例时,你应该使用svm
(变量名),而不是SVM
类名。
2)在分类问题的情况下,回答必须是分类的。所以
float labels[4] = { 1.0, -1.0, -1.0, -1.0 };
Mat labelsMat(4, 1, CV_32FC1, labels);
应该是:
int labels[4] = { 1, -1, -1, -1 };
Mat labelsMat(4, 1, CV_32SC1, labels);
3)train
接受不同的参数。 SVM->train(trainingDataMat, labelsMat, Mat(), Mat(), svm);
应该是:svm->train(trainingDataMat, ROW_SAMPLE, labelsMat);
4)OpenCV 3.0中不存在get_support_vector_count
。 int c = SVM.get_support_vector_count();
应该是:int c = svm->getSupportVectors().rows;
5)OpenCV 3.0中不存在get_support_vector
。 const float* v = SVM.get_support_vector(i);
应该是:const float* v = svm->getSupportVectors().ptr<float>(i);
this答案中的代码已按预期工作。如果你引入这样的错误,它显然不会起作用。